Biomedical Event Annotation with CRFs and Precision Grammars

Andrew MacKinlay, David Martinez, Timothy Baldwin

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

TRADD was the only protein that **interacted** with wild-type TES2 and not with isoleucine-mutated TES2.

- Proteins marked in input: TRADD, TES2, TES2
- Events:
 - ID: Ev1, Type: Binding, Trigger: interacted, Theme1: TRADD, Theme2: TES2
 - ID: Ev2, Type: Binding, Trigger: interacted, Theme1: TRADD, Theme2: TES2

(ロ) (同) (三) (三) (三) (三) (○) (○)

TRADD was the only protein that **interacted** with wild-type TES2 and not with isoleucine-mutated TES2.

- Proteins marked in input: TRADD, TES2, TES2
- Events:
 - ID: Ev1, Type: Binding, Trigger: interacted, Theme1: TRADD, Theme2: TES2
 - ID: Ev2, Type: Binding, Trigger: interacted, Theme1: TRADD, Theme2: TES2

(ロ) (同) (三) (三) (三) (三) (○) (○)

TRADD was the only protein that **interacted** with wild-type TES2 and not with isoleucine-mutated TES2.

- Proteins marked in input: TRADD, TES2, TES2
- Events:
 - ID: Ev1, Type: Binding, Trigger: interacted, Theme1: TRADD, Theme2: TES2
 - ► ID: Ev2, Type: Binding, Trigger: interacted, Theme1: *TRADD*, Theme2: *TES2*

(ロ) (同) (三) (三) (三) (三) (○) (○)

TRADD was the only protein that **interacted** with wild-type TES2 and not with isoleucine-mutated TES2.

- Proteins marked in input: TRADD, TES2, TES2
- Events:
 - ID: Ev1, Type: Binding, Trigger: interacted, Theme1: TRADD, Theme2: TES2
 - ► ID: Ev2, Type: Binding, Trigger: interacted, Theme1: *TRADD*, Theme2: *TES2*

(ロ) (同) (三) (三) (三) (三) (○) (○)

BioNLP task

3 tasks:

- 1. Identify events and theme(s)
- 2. Identify additional arguments, e.g. localization
- 3. Detect event modifiers (negations and speculations)
- Event types:
 - single-theme events: e.g. gene expression
 - multiple-theme events: *binding* of proteins or events
 - regulation events: regulate other events. E.g. X inhibits Y

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

9 different entities: subset of Genia event ontology

Motivation and Architecture

- Our motivation: deep linguistic processing for detection of speculation and negation
- Architecture:
 - Task 1:
 - Trigger word detection: CRF and Lookup systems
 - Event-theme construction (hand-crafted rules)
 - Task 3:
 - Deep parsing for semantic representation
 - Classification of events using maximum entropy learners

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Trigger Word Detection with CRFs

- Conditional probability distribution over label sequences given a particular observation sequence
- CRF++ toolkit
- Tested features: word-form, lemma, POS, chunking marks, protein NER, grammatical dependencies (from Bikel parser and GDep)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- JULIE-Lab sentence splitter and Genia Tagger for pre-processing
- Window sizes: ±3 and ±4

Trigger Word Detection with CRFs

- Best results (training data): Precision ~ 66%, Recall ~ 30%
- All features help except for grammatical dependencies

▲□▶▲□▶▲□▶▲□▶ □ のQ@

±3 window size

Trigger Word Detection with Dictionary Look-up

Decision list for each trigger string found in training data

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Simply assign highest frequency class
- Frequency cut-off
- We can reach high recall (~ 77%) but at the cost of precision (~ 13%)
- Best f-score ~ 36% (~ 50% recall)

Trigger Word Detection: Combination

Add all trigger words identified by CRF and look-up

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Two approaches:
 - Optimise per class (Optim)
 - Always preference to CRF (All)

Event-theme Construction

- Approach: assign closest events/proteins as themes (without crossing sentence boundaries)
- Basic events:
 - Single closest protein
- Binding events:
 - Closest proteins
 - Parameters: maximum distance and number of themes
- Regulation events
 - Single closest protein or event (give precedence to events)
 - Parameters: maximum distance and detect/ignore CAUSE

(ロ) (同) (三) (三) (三) (三) (○) (○)

Task 1 Results

System	Rec.	Prec.	F-Score
Combined (Optim.)	17.44	39.99	24.29
Combined (All)	24.36	30.87	27.23
CRF	12.23	62.24	20.44
CRF (+ synt feats)	12.01	61.91	20.11
Look-Up	22.88	29.67	25.84
Look-Up (freq \geq = 20)	23.26	26.74	24.88
Look-Up (freq \geq = 30)	21.37	30.50	25.13

Table: Task 1 results with approximate span matching, recursive evaluation (our final submission is in bold)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Negation/Speculation Detection

 English Resource Grammar (ERG): high-precision grammar in the HPSG framework

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- GENIA tagger to deal with named entities
- 72% of training sentences parsed

Feature Extraction

Semantic formalism: Robust Minimal Recursion Semantics

(ロ) (同) (三) (三) (三) (○) (○)

- Elementary Predicates (EP): Predicates with their arguments
- Relationships between trigger EP and lexical cues
 - Outscoping and shared-argument

Features for Negation Identification

Pre-identify word lists:

- Conjunctions: _not_c, _but+not_c, _nor_c
- Other markers: _only_a, _never_a, _not+as+yet_a, _not+as+yet_a, _unable_a, neg_rel
- Negative-outscope feature: when negative EP outscopes trigger-EP
 - E.g. "...product was not (NEG-EP) able to bind (TRIG-EP) DNA and..."

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- NegOutscope neg_rel = 1
- NegOutscope not = 1

Features for Negation Identification

- ...product was not able to bind DNA and was recovered in cytoplasmic cellular extracts...
- ERG analysis
 - I8: neg_rel(692 : 695)(e9, ARG1: h10)
 - I11: _able_a_1 (696 : 700) (e12, ARG1: x6, ARG2: h13)
 - ► I14: _bind_v_to(704 : 708)(e17, ARG1: x6, ARG2: x16, ARG3: u15)
 - h10 qeq l11, h13 qeq l14
- Thus I8 immediately outscopes I11, and I11 immediately outscopes I14

(日) (日) (日) (日) (日) (日) (日)

Features for Negation Identification

- Negative conjunction: when trigger-EP is the argument (ARG0) of a negative conjuction EP
 - E.g. "...but not (NEG-EP) binding (TRIG-EP) DNA..."
- When trigger-EP is the argument (ARG0) of a negatively-outscoped EP
 - E.g. "...the product (TRIG-EP) was never (NEG-EP) considered..."

(日) (日) (日) (日) (日) (日) (日)

Features for Speculation Identification

- Pre-identify word lists:
 - Speculation verb short list: _investigate, _study, _examine, _test, _evaluate, _observe}
 - Extended list: adding WordNet sisters
- SpecVOBJ: when verb part of "speculative-verbs" set, and object is a trigger word
 - E.g. "IkappaBalpha phosphorylation and degradation (TRIG-EP) was analyzed (SPEC-EP)"
 - SpecVObj2+WN-seed:examine = 1
 - SpecVObj2+wn-sister:_analyze_v_1(examine) = 1

(日) (日) (日) (日) (日) (日) (日)

SpecVObj2+wn-gen = 1

More Features

Speculation:

- Modal verb outscopes trigger
- ARG0 of trigger-EP occurs as argument of the word 'analysis'
- General features:
 - E.g. (Modifier adjective) "...Fas upregulation (TRIG-EP) is central (ADJ-EP) to the preservation..."

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 'ModAdj:_central_a_1' = 1
- Trigger name, trigger POS, etc.

Negation/Speculation Classifiers

- Maximum Entropy classifier (Maxent Toolkit)
- Different feature combinations
- Baseline: bag of words
- Development phase:
 - Goldstandard events
 - 10-fold cross-validation
- Test phase:
 - Trained over goldstandard event extraction
 - Output of task-1 classifier as source of trigger words

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Development Results: Speculation

Feats.	Rec.	Prec.	F-Score
BOW	22.1	47.7	30.2
Spec. + BOW	23.2	57.9	33.1

 Very low performance over automatic classification, due to pipelining nature of evaluation

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Linguistic features improve (slightly) over BOW
- Combination of features works best

Development Results: Negation

Feats.	Rec.	Prec.	FSc.
BOW	15.0	30.2	20.0
Neg. + BOW	24.3	68.4	35.9

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Bigger improvement over BOW

Official Results for Task 3

TEAM	gold (match)	answer (match)	Rec.	Prec.	F-Score
ConcordU	3617 (1182)	1943 (1182)	32.68	60.83	42.52
VIBGhent	3617 (1105)	2227(1104)	30.55	49.57	37.80
ASU+HU+BU	3617 (710)	1185 (710)	19.63	59.92	29.57
NICTA	3617 (577)	1450 (575)	15.95	39.66	22.75
USzeged	3617 (722)	3113 (722)	19.96	23.19	21.46
CCP-BTMG	3617 (446)	777 (446)	12.33	57.40	20.30

Lessons Learned

- Keyword detection suffers from data sparseness
- Rules for event construction are too naive
- Deep parsing better than lexical baseline, but there are coverage problems
- Combined approach (detect triggers and themes together) to be explored for Task 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Biomedical Event Annotation with CRFs and Precision Grammars

Andrew MacKinlay, David Martinez, Timothy Baldwin

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ