
Peter Adolphs
DFKI GmbH

Language Technology Lab
Project Office Berlin

DELPH-IN Summit 2009
Barcelona

22nd July 2009

Tutorial

Chart Mapping in PET

Part 1
Token Mapping

Motivation

● hybrid processing, integrating annotations of
preprocessing tools into HPSG parsing

● we need to adapt annotations of different tools
to the requirements of our grammar

● example: adapting output of PTB-style
tokenizers to the ERG

– input string: Don't you!

– tokenizer output: <do, n't, you, !>

– tokens as expected by the ERG: <don't, you!>

First Example Rule

● example: recombining split contracted forms
● key concepts:

– token feature structures

– generalized chart

– rewrite rules on chart items

Token Feature Structures

● feature structures for
describing tokens

● annotations provided
by different tools
synthesized in token
feature structures

● lattice of structured
categories (token
feature structures)
as input to the parser

Generalized Chart

● tools may assume different tokenization
(paradigm case: input from speech recognizers)

● chart: dag whose vertices are abstract objects
rather than indexed token boundary positions

Chart Mapping Rules

● chart mapping: non-monotonic rewrite
mechanism on feature structure chart edges

● general format:

[CONTEXT :] INPUT → OUTPUT

● CONTEXT, INPUT, OUTPUT are sequences of
feature structures (each possibly empty)

● resource-sensitive: chart edges that let a rule
fire may be removed (namely, all INPUT edges)

Chart Mapping Rules

● rules represented by feature structures
● reentrancies enforce value identity
● example*:

* this example is incomplete and will be refined later

Copying Information

● OUTPUT items are instantiated by copying the
argument in the particular rule match

● specify the values of all relevant features of the
OUTPUT, otherwise information will leak

● reentrancies can be used to copy information
from INPUT to OUTPUT

Copying Information

Chart Mapping Procedure

chart: initial rule match (incomplete):

● rule matches associate rule arguments with
chart items

● the initial rule match is a copy of the rule fs

Chart Mapping Procedure

chart: next rule match (incomplete):

● each chart item is unified into the next unbound
CONTEXT and INPUT argument of a rule
match to yield the next rule match

I1

Chart Mapping Procedure

chart: next rule match (complete):

● a rule match is completed if all CONTEXT and
INPUT arguments are bound

I1

I2

Chart Mapping Procedure

chart: next rule match (complete):

● a rule fires if the rule match is complete
● all INPUT items are removed
● all OUTPUT items are instantiated

I1

I2

O1

Chart Mapping Procedure

chart after ptb_dont_tmr fired:

● each rule is applied until its fixpoint is reached
● cascaded architecture: all rules are applied in

the order of their definition

Regular Expressions

● unification + Perl-style regular expressions
● regex capture groups can be referred to in the

output

insert from input item 1 from path FORM the first capture group

regular expressions indicated by ^$

http://perldoc.perl.org/perlre.html

Positional Constraints

● so far, the positional relations between rule
arguments have not really been addressed

● we need to state how CONTEXT and INPUT
items positionally related to each other and
where to anchor OUTPUT items

● FROM and TO values cannot be used for that
purpose (FROM and TO of two adjacent items
are usually not the equal)

● positional constraints between items are
specified with a simple language

Positional Constraints

● items I1 and I2 are adjacent:
I1 < I2 or I1 > I2

● item I1 precedes I2 (possibly adjacent):
I1 << I2

● item I1 succeeds I2 (possibly adjacent):
I2 >> I1

● item I1 and I2 are in parallel:
I1@I2

● chart start and chart end can be used too:
^ and $ (e.g. ^ < I1)

Positional Constraints

● several such constraints can be conjoined
● positional constraints currently as a comma-

separated string (subject to change)

I1 I2

O1

Application Examples

● light-weight named entity recognition:

Application Examples

● fixing broken tokenization:

Preprocessing

Lexical Instantiation

Syntactic Parsing

natural language input

SYN ...
SEM ...

Old Architecture

● preprocessing has to deliver
an input chart as expected by
the grammar

● this has to be ensured by
specialized conversion
routines without recourse to
the grammar

● changes to the grammar
have to be reflected in these
data adaptation routines

● token mapping performs
certain preprocessing steps
within the grammar

● advantages:
– full control for the grammar

writer, using the same formalism
as for the grammar

– makes assumptions by the
grammar explicit

– removes complexity from
preprocessing

Preprocessing

Token Mapping

Lexical Instantiation

Syntactic Parsing

natural language input

SYN ...
SEM ...

New Architecture

Part 2
Lexical Instantiation
& Lexical Filtering

Hybrid Processing

● shaping the search space of the parser:
– widen search space (e.g. unknown word handling)

– narrow search space (e.g. prevent edges not
conforming to the output of a chunker)

● widening the search space often requires
constraining it later; constraints can be:

– hard: categorial conditions for the removal of chart
edges

– soft: leave it ultimately up to probabilistic
disambiguation

Passing Information Into LEs

● token fs are unified into lexical items:

Passing Information Into LEs

● token fs are unified into lexical items:

● TOKENS can be used for filtering

Lexical Instantiation of Generics

● selection of appropriate generic les originally
controlled by the parser (hard-coded):

– map from part-of-speech tags to generic les

– instantiate generic le for highest ranked pos tag where
no native le is available

● disadvantage:
– not flexible enough (e.g. use several taggers)

– cannot deal with partial lexical coverage,
e.g. We’ll bus to Paris.

● try to instantiate all generic les for all tokens
● filtering incompatible tokens by constraints on

TOKENS
● example:

Lexical Instantiation of Generics

Lexical Instantiation for Generics

● complementary solution to generic instantiation:
create le types for unknown words on the fly by
a lexical type predictor

– let the lexical type predictor create generic les
according to the statistical model

– add further generic les based on categorial
conditions where you’re absolutely sure (e.g.
trusting the output of a specialized gazetteer)

● after lexical instantiation, native and generic les
may be available in the same chart cell

● we can restrict lexical instantiation by positing
constraints on the token feature structures

● but we might also want to prevent some lexical
chart edges in certain contexts (set operations)

Lexical Filtering

Lexical Filtering

● lexical filtering phase, between lexical parsing
and syntactic parsing

● same formalism as for token mapping: chart
mapping rules but with empty OUTPUT list

● hard constraints on the parser’s search space

Lexical Filtering

● e.g.: filtering generic lexical entries where
native are available (lexical items are extended
with an LE-STATUS feature in this example):

● actual rules should be more finegrained (e.g.
delete generic entries if native entries with
same pos are available)

Lexical Filtering

I1
C1

Lexical Filtering

New Architecture

● use feature structures to
describe tokens

● chart mapping: resource-
sensitive rewriting of feature
structure items

● chart mapping on token fs
● generic instantiation driven by

compatibility with token fs
● lexical filtering with chart

mapping

Preprocessing

Token Mapping

Lexical Instantiation

Lexical Parsing

Lexical Filtering

Syntactic Parsing

natural language input

SYN ...
SEM ...

Part 3
Using Chart Mapping in PET

Changes to the Grammar

● ingredients for using chart mapping in your
grammar:

– types for token fs

– add token fs to lexical items

– types for chart mapping rules

– actual chart mapping rules

– settings telling PET what to find where

● convention: we used + as a prefix for chart-
mapping feature names to prevent clashes with
existing feature names

Changes to the Grammar: Types

● token type:
token := *top* & [+FORM string,
 +FROM string,
 +TO string,
 +POS pos, % +TNT tnt in ERG
 +ID *diff-list*].

● type for part-of-speech tagger results (aligned
lists of tags and probabilities):
pos := *top* & [+TAGS *list*, +PRBS *list*].
null_pos := pos & [+TAGS < >, +PRBS < >].

Changes to the Grammar: Types

● token lists:
tokens := *top* &
 [+LIST *list*,
 +LAST token].

● add token feature structures to lexical items:
word_or_lexrule := sign &
 [SYNSEM synsem,
 ORTH [FROM #from, TO #to],
 TOKENS tokens &
 [+LIST & < [+FROM #from], ... >,
 +LAST.+TO #to]].

Changes to the Grammar: Types

● chart mapping rule types:
chart_mapping_rule := *top* &
[+CONTEXT *list*,
 +INPUT *list*,
 +OUTPUT *list*,
 +POSITION string].
token_mapping_rule := chart_mapping_rule.
lexical_filtering_rule := chart_mapping_rule.

● useful: using types for typical chart mapping
rule configurations:
one_one_tmt := token_mapping_rule &
[+INPUT < [+ID #id, +FROM #from, +TO #to] >,
 +OUTPUT < [+ID #id, +FROM #from, +TO #to] >,
 +POSITION "O1@I1"]

Changes to the Grammar: Rules

● token mapping rules:
ptb_slash_tmr := one_one_form_tmt &
[+INPUT < [+FORM ^(.*)\\/(.*)$] >,
 +OUTPUT < [+FORM "${I1:+FORM:1}/${I1:+FORM:2}"] >].

...

● lexical filtering rules:
generic+native_lfr :=
 lexical_filtering_rule &
 [+CONTEXT < [SYNSEM.PHON.ONSET con_or_voc] >,
 +INPUT < [SYNSEM.PHON.ONSET unk_onset] >,
 +OUTPUT < >,
 +POSITION "I1@C1"].

...

Changes to the Grammar

● load token mapping and lexical filtering rules:
:begin :type.
:include "cmt.tdl".
:end :type.
:begin :instance :status token-mapping-rule.
:include "tmr.tdl".
:end :instance.
:begin :instance :status lexical-filtering-rule.
:include "lfr.tdl".
:end :instance.

● generics (as before):
:begin :instance :status generic-lex-entry.
:include "gle.tdl".
:end :instance.

Changes to the Grammar: Settings

● paths in cm rules:
chart-mapping-context-path := "+CONTEXT".
chart-mapping-input-path := "+INPUT".
chart-mapping-output-path := "+OUTPUT".
chart-mapping-position-path := "+POSITION".

● path to token feature structures in lexical items:
lexicon-tokens-path := "TOKENS.+LIST".
lexicon-last-token-path := "TOKENS.+LAST"

● paths in token fs:
token-form-path := "+FORM".
token-id-path := "+ID".
token-from-path := "+FROM".
token-to-path := "+TO".
token-postags-path := "+POS.+TAGS".
token-posprobs-path := "+POS.+PRBS".

Changes to the Grammar: Settings

● names for the cm sections:
token-mapping-rule-status-values :=
 token-mapping-rule.
lexical-filtering-rule-status-values :=
 lexical-filtering-rule.

● name for the generic le section (as before):
generic-lexentry-status-values :=
 generic-lex-entry.generic-lexentry-status-
values := generic-lex-entry.

Input Formats

● existing input formats (String, YY, PIC) can be
used with chart mapping

● available information from old input formats is
automatically mapped to token fs

● new input format: FSC (Feature Structure Chart)
– XML-based input format

– allows you to specify arbitrary token feature
structures (integrate annotations from any tool)

– currently only supported by acrocheck

Distribution

● distribution via LOGON Repository (prebuilt)
svn co http://svn.emmtee.net/tags/barcelona
$LOGONROOT/bin/flop -t
$LOGONROOT/bin/cheap -t

● distribution via PET Repository (sources)
svn co http://pet.opendfki.de/repos/pet/branches/cm
autoreconf -i
./configure –with-xml # cf README
make
sudo make install

● cm branch will be merged to main soon
svn co http://pet.opendfki.de/repos/pet/main

Invocation

● invocation of chart mapping and new generic
instantiation:
cheap ­cm ­default­les=all

● add -t in logon handon release:
$LOGONROOT/bin/cheap ­t ...

● batch parsing in LOGON (cf. CPU definition for
ERG with TNT tagger):
./parse ­­binary ­­erg+tnt <skeleton>

Debugging

● not very comfortable at the moment (PET lacks
an interactive debugger)

● debugging via bit-flag parameters to -cm option
● subject to be changed to a logging framework

Debugging

● bit-flag parameters to -cm option:
– bit 0: which rules fired & which max ids of items

before and after each chart mapping phase

– bit 1: which regexs matched

– bit 2: initial and final token mapping chart

– bit 3: initial and final lexical filtering chart

– bit 4: which rules fired + print OUTPUT items

– bit 8: which items were checked / which matched

● thus -cm=0: chartmapping without logging

Part 4
Wrap Up

Conclusions

● versatile device for many preprocessing tasks
● pre-processing can be better controlled with

grammar-specific means
● external information is made accessible to the

grammar
● reduces the need for special code inside and

outside the parser

Chart Mapping Paper

Adolphs, Peter; Oepen, Stephan; Callmeier,
Ulrich; Crysmann, Berthold; Flickinger, Dan &
Kiefer, Bernd. 2008. “Some Fine Points of Hybrid
Natural Language Parsing”. In Proceedings of the
6th International Conference of Language
Resources and Evaluation (LREC 2008).
Marrakech, Morocco.
http://www.lrec-conf.org/proceedings/lrec2008/slides/349.pdf

http://www.lrec-conf.org/proceedings/lrec2008/slides/349.pdf

● DELPH-IN community and beyond, especially
Nuria Bertomeu, Ann Copestake, Remy
Sanouillet, Bernd Kiefer, Ulrich Schäfer and
Benjamin Waldron for numerous in-depth
discussions

● funding:
– ProFIT program of the German federal state of Berlin

and the EFRE program of the EU (to the DFKI
projects Checkpoint and KomParse)

– the University of Oslo (through its scientific
partnership with CSLI)

Acknowledgements

The Chart Mapping Tool in PET

It’s New!

 It’s Flexible!

 It’s Powerful!

 It’s Fast!

 It’s Useful!

The Chart Mapping Tool in PET

It’s Ready For Use!

	Name of Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

