DELPH-IN Grammars in CoNLL 2009 Shared Task

Yi Zhang^{♠♡}, Stephan Oepen[♣]

*LT-Lab, DFKI, Germany

[⋄]Computational Linguistics, Saarland University, Germany

*Informatics, University of Oslo, Norway

DELPH-IN Summit 2009 Barcelona, Spain

Outline

- Overview
- 2 Deep Parsing
- 3 Deep Features
- 4 Results

CoNLL 2009 Shared Task

Syntactic and Semantic Dependencies in Multiple Languages

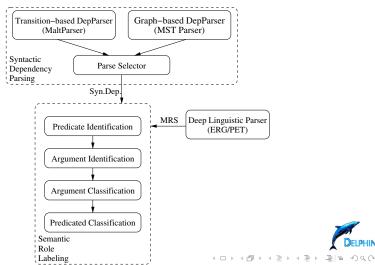
- Joint learning of syntactic and semantic dependencies
- Multilingual
 - Catalan (AnCora)
 - Chinese (PCTB+CPropBank)
 - Czech (PDT)
 - English (PTB+PropBank+NomBank)
 - German (Tiger+Salsa)
 - Japanese (Kyoto)
 - Spanish (AnCora)
- Different original annotation converted into a uniformed format
- In-domain and out-domain tests (for cs, en, de)

ELPHIN

Motivation

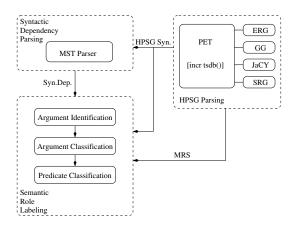
- Show benefits of applying deep parsing in learning tasks
- Road-testing grammar coverage

Previous Participation


CoNLL 2008 Shared Task

- Semantic (MRS) features help to improve the accuracy of SRL for English
- Improvement is more significant in the out-domain test

System Architecture 2008


What's New Now?

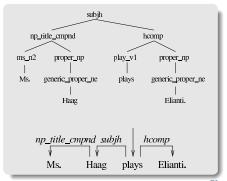
- Multilingual
- Gather both syntactic and semantic features from deep parses
- Feed deep features to both statistical parser and SRL
- Retrain parse disambiguation models with given training data

System Architecture 2009

Deep Grammar Resources

Grammar	Coverage	Speed
ERG	80.4%	10.06s
GG	28.6%	3.41s
JaCY	42.7%	2.13s
SRG	7.5%	0.80s

Parsing Setup

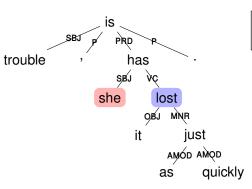

- Based on LOGON tree, availabe in SVN as a separate branch svn co http://svn.emmtee.net/snug/conll09
- Chart-mapping for preprocessing
- POS-based unknown word handling

Converting HPSG Derivations to Dependency Backbones

- Use head finding heuristics (language and grammar dependent) to identify the head word of each phrase in the derivation tree
- For binary branches, create a dependency relation from the head word of the non-head daughter to the head word of the head daughter, named after the HPSG rule

Updating Parse Disambiguation Models

- Unlabeled dependency agreement can be calculated between the CoNLL syntactic dependencies and HPSG dependency backbone
- Parse disambiguation models are retrained to maximize the dependency agreement score
- Experiments indicate a positive correlation between the DA score and HPSG parse quality


Deep Syntactic Features

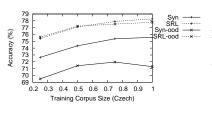
- POS of the DB parent from the predicate and/or argument
- DB label of the argument to its parent (AI/AC)
- Labeled path from predicate to argument in DB (AI/AC)
- POSes of the predicate's DB dependents

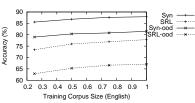
Deep Semantic (MRS) Features

- P MRS EP-name: lose v 1 rel
- P MRS-args labels: ARG1 ARG2
- P MRS-args POSes: PRP PRP
- A MRS EP-name: pron_rel
- A MRS-preds labels: ARG1
 - A MRS-preds POSes: VBZ

Using Deep Features for Dependency Structure Learning

- HPSG dependency backbone features are fed back to the statistical dependency parser, and achieved better out-domain parsing performance [Zhang and Wang, 2009]
- Both HPSG dependency backbone features and MRS features are integrated into the SRL pipeline (MEM classifiers), leading to variying levels of improvements




Evaluation Results

		ca	zh	CS	en	de	ja	es
Z	Closed	82.67	73.63	75.58	87.90	84.57	91.47	82.69
လ်	ood	-	-	71.29	81.50	75.06	-	-
	Closed	67.34	73.20	78.28	77.85	62.95	64.71	67.81
분	ood	-	-	77.78	67.07	54.87	-	-
S	Open	-	-	-	78.13 (↑0.28)	64.31 (↑1.36)	65.95 (↑1.24)	68.24 (↑0.43)
	ood	-	-	-	68.11 (†1.04)	58.42 (†3.55)	•	-

Learning Curves

Conclusion

 Conclusions from CoNLL 2008 shared task participation has been confirmed on multiple languages, even if the grammar coverage is low

References I

Zhang, Y. and Wang, R. (2009).

Cross-Domain Dependency Parsing Using a Deep Linguistic Grammar.

In *Proceedings of Proceedings of ACL-IJCNLP 2009*, Singapore.

to appear.

