Underspecified quantification

A. Herbelot

Computer Laboratory University of Cambridge

DELPH-IN, 2010

Herbelot, Aurelie (University of Cambridge)

Underspecified quantification

DELPH-IN 2010 1 / 31

590

3 > 4 3

Outline

Introduction

- 2 Ambiguous quantification
 - Terminology and scope
 - Genericity

Underspecified quantification

- Bare forms, mass terms and definite plurals
- Formalisation

∃ >

udef_q

• Cats sleep.

Figure: An example of udef_q

< 🗇 🕨 <

B + 4 B +

"We have underspecified quantifiers for bare plurals in the ERG, without ever having worked through what that would mean at all - but it's a lot prettier for the composition if that assumption can be maintained. I don't think the proper semanticists are enthused."

Ann (16.03.2009)

Wishes

- Answering the question 'What does udef_q really mean?'
- Enthusing the formal semanticists.

< ロ > < 同 > < 回 > < 回 >

Outline

Introduction

Ambiguous quantification

Terminology and scope
Genericity

3 Underspecified quantification

- Bare forms, mass terms and definite plurals
- Formalisation

4) Conclusion

∃ ► ∢

Quantification resolution

- The task: translation of ambiguously quantified NPs into unambiguous ones:
 - Cats are mammals = All cats are mammals
 - Cats were sleeping by the fire = Some cats were sleeping by the fire
 - Water was dripping through the ceiling = Some water was dripping throught the ceiling
 - The beans spilt out of the bag = Most/all beans spilt out of the bag
- Why? For information extraction, inference, entailment, etc.

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantification resolution

- More formally, quantification resolution is the process of annotating an ambiguously quantified noun phrase with a fully specified quantifier. A fully specified quantifier is a quantifier for which we have a quantification semantics with a unique, unambiguous set relation.
- Cats sleep
 - Some cats sleep: $\mathbf{0} < |\phi \cap \psi|$
 - All cats are known to sleep: $|\phi \cap \psi| = |\phi|$

where ϕ is the set of all cats and ψ the set of all things sleeping.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quantifiers

- We assume a continuous quantificational space divided into three basic quantifiers: *some*, *most* and *all* (also *one*).
 - $\textit{some}(\phi, \psi)$ is true iff $0 < |\phi \cap \psi| < |\phi \psi|$
 - $most(\phi, \psi)$ is true iff $| \phi \psi | \le | \phi \cap \psi | < | \phi |$
 - $all(\phi,\psi)$ is true iff $\mid \phi \cap \psi \mid = \mid \phi \mid$

・ 同 ト ・ ヨ ト ・ ヨ ト

Reference

 Following Link (1983), we take a lattice view of plurals where any point of the lattice under the supremum refers to a proper subset of the supremum.

Figure: The join-semilattice of all cats (Kitty, Sylvester and Bagpuss) in world ${\it W}$

Scoping the study

- We assume three forms give rise to quantification ambiguity in NPs: the definite form, the indefinite singular *a* and the bare form.
 - A cat can sleep rolled up, with its head on its hind legs. (Most cats those without arthritis).
 - The Galapagos turtle lives over 150 years. (Some lucky Galapagos turtles).
 - Dodos are extinct. (The kind *dodo*?).
 - At the end of the lecture, the/her/his students asked questions about the dodo. (Some/Some of her/Some of his students).
 - Water was dripping through the ceiling. (Some water).
 - Furniture has a practical purpose. (Most furniture except contemporary art tables and chairs).

3

Outline

Ambiguous quantification

Terminology and scope

Genericity

- The second sec

• = • •

Genericity: some definitions

- Genericity is ambiguous when it comes to quantification!
- Krifka et al (1995): two phenomena
 - Habituality: John smokes after dinner.
 - Reference to kind: The potato was first cultivated in South America.

A B > < B</p>

What is a kind?

- Species? Specimen?
- Well-established kinds
- Carlson (1977): basic ontology of kinds, objects and stages
- NOT definite plurals

A (10) A (10) A (10)

The GEN operator

Generalised quantifier form

GEN $x_1 \ldots x_n$; $y_1 \ldots y_n$ [Restrictor $(x \ldots x_n)$; Matrix $(x_1 \ldots x_n, y_1 \ldots y_n)$]

- No explicit, pronounced form in any known language (Dayal, 1999)
- No unique quantifier corresponds to GEN. Do generics quantify at all?
 - Yes. (At least in some cases) inference is possible at instance-level. No inference possible with $\phi(\psi)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

- Ambiguous quantification
 Terminology and scope
 - Genericity
- 3

Underspecified quantification

- Bare forms, mass terms and definite plurals
- Formalisation

4 Conclusion

- The second sec

4 ∃ > 4

Underspecified quantification

- Replace ambiguous quantification with underspecified quantification.
- No silent *GEN* quantifier but an empty slot for the appropriate quantifier.
- We can always paraphrase 'X does Y' as 'There is a set of things X, a certain number of which do Y' (note the partitive construction).

< 同 ト < 三 ト < 三 ト

Some bare plurals

- Dogs are in my garden = some dogs are in my garden.
- Frenchmen eat horsemeat = some/relatively-many Frenchmen eat horsemeat. (For the *relatively many* reading, see Cohen, 2001.)
- Cars have four wheels = most cars have four wheels.
- Typhoons arise in this part of the Pacific = some typhoons arise in this part of the Pacific OR most/all typhoons arise in this part of the Pacific.

A (10) A (10)

Other constructs

- Bare plurals are quantifiable. How about other constructs?
- (In)definite singulars: *The cat is a mammal / A gentleman opens doors for ladies*. [(Nearly) trivial]
- Bare singulars: *Furniture has a practical purpose*.
- Definite singulars: The reporters asked questions...

4 3 > 4 3

Are bare singulars singular?

- Following Chierchia (1998) we treat bare singulars as regular bare plurals:
 - Water was dripping through the ceiling. (Some water).
 - Furniture has a practical purpose. (Most furniture).
 - Water consists of H₂O. (All water).

A (10) A (10) A (10)

Definite plurals included

- Traditionally, definite plurals have been considered as universals (Lyons, 1999).
- But: The reporters asked questions after the press conference (Dowty, 1987).
- The best paraphrase is: 'There is a large set of reporters all those present at the press conference – and some of them asked a question'.
- So definite plurals can also be said to be underspecified:
 - Your employees are dedicated. (True, even if one out of 50 likes a lie-in.)
 - Those apples have turned bad. (True, even if 10% are still okay.)
 - The rice spilt out of the bag. (True, even if three grains are still in the bag.)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The partitive construct

- We can always paraphrase 'X does Y' as 'There is a set of things X, *a certain number of which* do Y'.
- Brogaard (2007) gives an account of definite plurals as partitive constructions. We follow this reading and expand it to all underquantified constructs.

< 同 ト < 三 ト < 三 ト

Outline

Introduction

- Ambiguous quantification
 Terminology and scope
 - Genericity

Underspecified quantification

- Bare forms, mass terms and definite plurals
- Formalisation

Conclusion

- The second sec

4 ∃ > 4

Formalising the partitive construction

• Distributive predicate: The reporters asked questions at the press conference.

 $X = \sigma^* x \text{ ReporterAtPressConference}'(x) \land \exists Y[Y \prod X \land \forall z[z \cdot \prod Y \rightarrow askQuestions'(z)]]$

 Collective predicate: Americans elect a new president every five years.

 $X = \sigma^* x \operatorname{American}'(x) \land \exists Y[Y \prod X \land \operatorname{electPresident}(Y)]$

< □ > < 同 > < 回 > < 回 > < 回 >

Adding the quantifier

The reporters asked questions at the press conference.

 $\begin{aligned} X &= \sigma^* x \text{ ReporterAtPressConference}'(x) \land \exists Y[Y \prod X \land \\ \forall z[z \cdot \prod Y \to askQuestions'(z)] \land 0 < |Y| < |X - Y|] \end{aligned}$

Americans elect a new president every five years.

 $X = \sigma^* x \operatorname{American}'(x) \land$ $\exists Y[Y \prod X \land \operatorname{electPresident}'(Y) \land |X - Y| = |X|]$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The underspecified quantifier

• $X = \sigma^* x P'(x) \land \exists Y[Y \prod X \land Q(Y)] \land quantConstraint(X, Y)]$

where the quantConstraint ensures the correct cardinality of Y for various quantifiers and the predicate Q applies distributively or collectively depending on the semantics of the sentence. Xdenotes the N-bar referent while Y denotes the NP referent.

4 3 5 4 3 5 5

Formalisation

Formalising kinds

- A kind reading for *The dodo is extinct*: $\phi(\psi)$?
- But: true kinds can be expressed as bare plurals: Dodos are *extinct* (14,700 Google matches)
- But: how to cater for anaphora? The dodo is extinct but Mary says she's seen one.
- A kind is the supremum of all instances with property $Kind(X) = \sigma^* x X'(x)$ (Chierchia, 1998)
- $X = \sigma^* x \operatorname{dodo'}(x) \land \exists Y [Y \prod X \land \operatorname{extinct'}(Y)]$ $\wedge (|Y - X| = 0) \wedge \exists Z[Z \prod Y \wedge see'(Mary, Z)] \wedge (|Z| = 1)]$
- Tick: Enthusing formal semanticists.

3

・ロト ・四ト ・ヨト ・ヨト

udef_q explained

Tick: Defining udef_q.
 X = σ*x P'(x) ∧ ∃Y[Y ∏ X ∧ Q(Y)] ∧ quantConstraint(X, Y)]

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In practical terms...

- Annotation performed on 600 random subject NPs from Wikipedia. Inter-annotator agreement on 300 (Kappa=0.72).
- Two classifiers:
 - Tree-based classifier with simple syntactic features (78% precision)
 - Similarity-based classifier (can increase precision but recall is poor)

・ 同 ト ・ ヨ ト ・ ヨ ト

Further work

- Annotating the Wikipedia data in the Redwoods treebank (?)
- Add deeper features to the tree-based classifier.
- Re-run everything with more data...

• • • • • • • •

Questions

• Where is the udef_q in The cat sleeps?

Figure: Something missing?

Herbelot, Aurelie (University of Cambridge)

Underspecified quantification

DELPH-IN 2010 31 / 31

Image: A matrix and a matrix