TDL Grammars in C-Sharp

MA work supervised by Emily Bender

Glenn Slayden
University of Washington

Overview

thai-language.com
Matrix grammar of Thai
C#, CLR, CLI, BCL...

Project progress
— GLB calculation
— DAG representation

This work is at a very early stage: not
presenting results today

Another parser?

“The [DELPH-IN] community can always benefit
from another parser.”

-Dan Flickinger

Goals

Large-scale processing of TDL grammars

Truly portable binaries between Windows, linux, and
Mac

Robust, commercial grade platform

Easier to use, more accessible

Performance: Byte code JIT-compiled to native
Developer productivity: LINQ

GUI improvement wishlist
— Grammar visualization tools
— Printing
— TDL editor

Thai-language.com

Started 1997

Supervised Thai-English
lexicon of 50,000 entries

Message boards, reading
exercises, lessons

Custom-programmed site
has followed the evolution
of Windows Server
technologies from ASP to
NET 4

2S5 ZEDW RS2 S
=22 E03 P a2
Zorprp=po 0l
LDEDEDO RS DD

Welcome o thailanguage.com, your Internet
rescurce for larning the Thal language for aver 13
VRArE

Here you'll find 13131 audio clips, over 47222
dictionary entries, 823 images and illustrations,
massage boards, and 3 fun world-wide comemunity
of folks who are interested in Thai language, culture,
residency, and travel.

This webslte provides Information for English-
speakers with any level of interest=from beginners
who wish to learn a few phrases before their
vacation 1o advanced students whoe may be Nving
working, or retired in Thatland some-day.

Auicle Lbnler Site News
everview of the Thal language
dictionary searches June 9, 2010 Thanks 1o David for entering new content.

bulk boolasp
new discussions

P'm sure | speak with one woice for the members of this website in

expressing our concern over the last months for the the safety and

reforence index prosperity of all the citizens and residents of Thalland; we wish you all
lesson index the very best during this difficult time.
site sottings

Migsion Statement

The mission of thai-longragecom is to offer English
speakers the highestquality non-commercial Thal
language resaurce on the web. Our discussion forums,
dictionary, and learning materials support a friendly world
-wide community of folks who are Interested in Thal
language, culture, residency and wravel

Site Technology

TR apsremsan

Gl s

To Support This Website

This website has no distracting third-party
advertisements, so please help suppent s
operation by visiting the gnline store. whore you
can browse and buy Thal language books and
learning materiale Or click on the donation icon
below. ¥ou'll be helping to keep your favorize
Thal language tlte on the web running.

Thanks for visiting the site and pleaze feel free to
send foedback-

walilend 24 Good Luck!

2 mir g sanbsl plasss meste

o el R

<" Truvied sites | Protected Mods OFf fa = RN

Matrix Grammar of Thai

e Emily’s Ling567 Grammar Engineering, Winter 2009 plus
follow-on work

e Phenomena modeled include simple treatments of:
— aspect auxiliaries
— numeric-classifiers
— demonstrative-classifier interaction
— pro-drop
— questions
— adverbs, adjectives
— copula
— declarative and interrogative complementizer
— negation

Current integration between Matrix grammar
and thai-language.com

TDL lexicon emitted

Testsuite coverage report
— http://www.thai-language.com/testsuite-results

LKB integration (spotty) uses LKB socket interface
— http://www.thai-language.com/id/219435/parse

— MRS results bug

— No UTF8 support; uses numeric lexicon

— Frequent LKB reboots

Problems with Thai display in LKB, Emacs, and [incr
tsdb()]

ECMA-335: Common Language
Infrastructure

Portable binaries!
-lagship programming language: C#
~#, Python, Ruby, VB, PowerShell, ...

— http://en.wikipedia.org/wiki/List of CLI Languages
C++/CLI supports mixed mode

Fully managed: verifiable code, garbage
collection, strong guarantees

Modern concurrency and threading

100% Unicode; outstanding legacy encoding
support

Common Type System (CTS)

Traditional OO paradigm:

— Fields

— Members

— private/public

Single-object, multiple-interface inheritance
Polymorphism

Objects freely interoperate between
languages and disparate applications

C

e Vaguely ANSI-C syntax
e Like all CLI languages: strongly-typed
 No pointers, but:

— supports CLI value types — require no garbage
collection: important for performance

— single-indirection: value types and references can
be passed by reference

Developer Productivity

o) “lusing System;
. i .Collecti : :
Intellisense” code sing Systen.collections. Geneic
using System.Text;

Com pletion “names pace Consolel

Vast Base Class Libraries =
(BCL) ' consale.

Strongly typed “generic” = o
classes (templating) o

LINQ

Adds functional-style programming to the
imperative paradigm

Functional operations on sequences:

— aggregate, partition, set, project, join, restrict,
select, generate, ...

Deferred execution

Cross-CLI, but most richly exposed in F# and
C#

Optional SQL-like syntax can be used in C#

LINQ example

String[] i1tems = { "cat', "pear', "apple', "cat"

"pear™, '‘pear', "apple' };

foreach (var pair iIn i1tems
-GroupBy(k => k)
.OrderBy(grp => grp.Key)
.Select(grp => new

, '"banana'",

{
word=grp.Key,
count=grp.Count()
)
Console._WriteLine(pair.word + ™ " + pair.Count);
apple 2
banana 1
cat 2

pear 3

So far

Robust TDL parser
Builds type system
Calculates GLB closure

Maximal inference for
authored types

DAG representation

— discussion follows

stem = .
TEM *top"
KKKKKKK
SYNSEN S
OFT
OPT-CS
LOCAL local-min 4
CAT cat 5
HEAD op”
VAL lenca B
susd
SPR
COMPS
SPEC
~-KEYCO
MC "top”
HC-LIGHT “top”
POSTHEAD ‘top”
CONT “lop"
AGR op"
OOOOO
COORD-REL o)
COORD-S
NON-LOCA :
ARG
IMFLECTED *top"
CCCCC P—
HOO! hook 8
LTOP
IMDEX "top
XARG
RELS | 4ifi-
LIST
LAST *1op*
HCONS | diff-list 12
LIST
LAS

LCOORD-DTR “top”
RCOORD-DTR_“lop”

= O O Q T 2

*top™.
*top™.
a & b.

a & c.
a & c.

GLB calculation

e Agdibtypelod f
tcp <agﬁ Eg;|lt:th,f|::eE§£e

LKB result:
12 edges
a-f and a-e are redundant

*top™:
children
a:
children:
b:
children
d:
C:
children
e:
T:
glbtypel:
children
glbtype2:
children

TGCS result

-{ab?}

{ glbtypel }

: { glbtypel c }

- { glbtype2 }

: { glbtype2 d }

- {fe}

10 edges
none redundant

GLB calculation

e Assign bit codes according to Ait-Kaci (1989):
— every type gets a unique bit position
—top==-1

— code is logical ‘or’ of its child values (assign from
leaf to top)

e glbtypes are given by non-zero logical ‘and’
e so far so good

bit twiddling

Looking only at GLBs, we can directly obtain the
transitive closure of the graph by carefully
manipulating their parents and children. For each
GLB:

1. Consider it as a parent: add its children

1a. get a list of draft candidates: all descendants of
'node’ The order in which these are added is
important because it determines the order of testing
children in the next sub-step. The list is needed
because children may be eliminated from the list
before the point at which they'd otherwise be added.

bit twiddling (cont.)

1b. pick the subset of immediate children from this list.
While the list is not empty, add the oldest item as a child
and then remove all of its descendants from the list.

2. Consider it as a child. Add its parents
2a. get a list of draft candidates between 'node' and
tOp
2b. pick a minimal set of parents from this list.

Each selection allows us to eliminate others from the

list. This effect is maximized by starting with
candidates with the fewest additional bits set beyond

the required match.

DAG Literature Review (selected)

Structure-sharing (Pereira 1985)
Non-destructive (Wroblewski 1987)
Quasi-destructive (Tomabechi 1991)

— Over-copying
— Early copying
Thread safe (van Lohuizen 2000)

— parallel unification
— concurrent unification

DAG representation

e DELPH-IN TFS grammars have notable features:

— Fixed type hierarchy

— A feature can only be introduced in exactly one
place in the type hierarchy

— When unification is successful, all features remain
appropriate for their types
 Can we capitalize on these observations, plus
intuition about the efficient use of C# value
types to improve unification performance

“feature-centric” TFS representation

* Consider two types of TFS edges:
— Feature-appropriate-for-type
* These are fixed for the life of the grammar
 Precomputed and associated with types

— Value of feature ‘F’ in TFS node of type ‘t0’
constrained by type ‘t1’

 These edges are manipulated at runtime
e All edges of this type are stored with feature ‘F

e Successful unification (simple case): no edges
are “created” or “destroyed”

triple description

FEATURE
type . out-mark

in-mark ~

A9 | t0 | 12

t0

Example

t1

t2

t3

handles
E
to 7
t2 8
t3 8 t0 10 |
9 | t0 | 11
F
—® 9 [w0 | 12 |
t0 := *top*.
tl := tO0.
t2 := *top* & [E tO0].
t3 := t2 & [F tO0].

t3 & [E t1, F t1].

Intention of this design

e ‘generic’ list datatypes maintain previously-
allocated capacities

e by using generic lists of C# ‘value types’

rampant DAG copying is expected to invoke
minimal (or no) GC activity

Continuing work

e This development environment has very rich
concurrency support: consider and seize upon
opportunities that present themselves

e Availability of rich test cases (ERG, Thai matrix
grammar) facilitates rapid development

 Next step: parsing

References (1/2)

Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, Roger Nasr. 1989. "Efficient
Implementation of Lattice Operations"

Ulrich Callmeier. 2001. Efficient Parsing with Large-Scale Unification
Grammars. MA Thesis, Universitat des Saarlandes - Fachrichtung
Informatik.

Ulrich Callmeier. 2000. PET: a platform for experimentation with efficient
HPSG processing techniques. Natural Language Engineering 6(1): 99-107.

Bernd Kiefer, Hans-Ulrich Krieger, John Carroll, and Rob Malouf. 1999. A
Bag of Useful Techniques for Efficient and robust Parsing. In Proceedings of
the 37th annual meeting of the Association for Computational Linguistics.
473-480

Robert Malouf, John Carroll, and Ann Copestake. 2000. Robert Malouf,
John Carroll, and Ann Copestake. 2000. Effcient feature structure
operations witout compilation. Natural Language Engineering, 1(1):1-18.

Fernando C. N. Pereira. 1985. A structure-sharing representation for
unification-based grammar formalisms. In Proceedings of the 23rd Annual
Meeting of the Association for Computational Linguistics. Chicago, IL, 8-12
July 1985, pages 137-144.

Hideto Tomabechi. 1991. Quasi-destructive graph unification. In
Proceedings of the 29th Annual Meeting of the Association for
Computational Linguistics, Berkeley, CA.

References (2/2)

Hideto Tomabechi. 1992. Quasi-destructive graph unifications with
structure-sharing. In Proceedings of the 15th International Conference on
Computational Linguistics (COLING-92), Nantes, France.

Hideto Tomabechi. 1995. Design of efficient unification for natural
language. Journal of Natural Language Processing, 2(2):23-58.

Marcel P. van Lohuizen. 1999. Parallel processing of natural language
parsers. In PARCO '99.

Marcel P. van Lohuizen. 2000. Exploiting parallelism in unification-based
parsing. In Proceedings of the Sixth International Workshop on Parsing
Technologies (IWPT 2000), Trento, Italy.

Marcel P. van Lohuizen. 2000. Memory-efficient and Thread-safe Quasi-
Destructive Graph Unification. In Proceedings of the 38th Meeting of the
Association for Computational Linguistics, Hong Kong, China, 2000.

Marcel P. van Lohuizen. 2001. A generic approach to parallel chart parsing
with an application to LinGO. In Proceedings of the 39th Meeting of the
Association for Computational Linguistics, Toulouse, France.

David A. Wroblewski. 1987. Nondestructive graph unification. In
Proceedings of the 6th National Conference on Artificial Intelligence (AAAI-
87), 582-589. Morgan Kaufmann.

