
Assigning Lexical Types to Unknown Words

João Silva

NLX—Natural Language and Speech Group
http://nlx.di.fc.ul.pt

University of Lisbon

Delph-In Meeting
July 2010

1 / 12

http://nlx.di.fc.ul.pt


Presentation outline

Introduction

Datasets

Experiments

Final remarks

2 / 12



Introduction

The problem

I LX-Gram has low coverage

Objective

I Increase the coverage of the grammar

I Make the grammar robust to OOV words

The approach

I Assign lexical types on-the-fly prior to parsing
(ideally, a single type for each OOV word)

I Use machine learning methods

3 / 12



Datasets

Dataset creation

I Deep databank produced with LX-Gram

I Mostly newspaper texts, but also test suites (for regression)

I A set of tools for extracting vistas:
TreeBank, DepBank, PropBank, etc.

Some numbers

I Version 2 of the databank

I 1, 204 sentences for a total of 9, 789 tokens
I 274 different lexical types

I Highly skewed
≈ 50% occur at most 4 times
≈ 25% occur only once

4 / 12



TnT supertagger

Use a POS-tagger

I TnT: Second-order Markov Models

I Train and tag with default parameters

I Dataset: sentences, tokens are lemmas tagged with lexical
types

Evaluation

I 10-fold cross-evaluation, 90–10% split
I Accuracy:

I 88.58% (over all tokens)
I 42.22% (over unknown tokens)

5 / 12



C&C supertagger

Use a supertagger

I C&C: Maximum-entropy model

I Train and tag with default parameters

I Dataset: sentences, tokens are lemmas tagged with POS and
lexical types

Evaluation

I 10-fold cross-evaluation, 90–10% split

I Accuracy: 79.61% (over all tokens, gold POS tags)

6 / 12



Supertagger comparison

Summary

I TnT is a POS tagger with a simple trigram model

I C&C is a supertagger, uses POS tags, etc.

I However, TnT (88.58%) beats C&C (79.61%)

Surprising?

Results from (Dridan, 2009):

I TnT (91.47%) beats C&C (89.08%)

I Learning curves:
TnT has stabilized but C&C is still rising

7 / 12



Supertagger comparison

Summary

I TnT is a POS tagger with a simple trigram model

I C&C is a supertagger, uses POS tags, etc.

I However, TnT (88.58%) beats C&C (79.61%)

Surprising?

Results from (Dridan, 2009):

I TnT (91.47%) beats C&C (89.08%)

I Learning curves:
TnT has stabilized but C&C is still rising

7 / 12



TiMBL classifier

Dedicated classifier

I TiMBL: Memory-based learner

I Dataset: for each word, a set of 26 features including
lemma, POS, previous POS, dependents, etc.

I 10-fold cross-evaluation, 90–10% split

A classifier for all types

I Accuracy: 79.37%
(over all tokens)

I For verb.dir trans:
AUC: 0.7895

Set of binary classifiers

I One classifier for each
lexical type

I For verb.dir trans:
AUC: 0.8041

8 / 12



Imbalanced datasets

Imbalanced datasets are a major problem for ML algorithms

I Issues in training and evaluation

Methods for dealing with imbalanced datasets:

I Under-sampling the majority class

I Over-sampling the minority class

I SMOTE (Synthetic Minority Over-sampling TEchnique)
Creates new synthetic examples for the minority class

1. Take an example from the minority class

2. Link to k nearest minority neighbors

3. Create a new case along each link

9 / 12



Imbalanced datasets

Imbalanced datasets are a major problem for ML algorithms

I Issues in training and evaluation

Methods for dealing with imbalanced datasets:

I Under-sampling the majority class

I Over-sampling the minority class

I SMOTE (Synthetic Minority Over-sampling TEchnique)
Creates new synthetic examples for the minority class

1. Take an example from the minority class

2. Link to k nearest minority neighbors

3. Create a new case along each link

9 / 12



Imbalanced datasets

Imbalanced datasets are a major problem for ML algorithms

I Issues in training and evaluation

Methods for dealing with imbalanced datasets:

I Under-sampling the majority class

I Over-sampling the minority class

I SMOTE (Synthetic Minority Over-sampling TEchnique)
Creates new synthetic examples for the minority class

1. Take an example from the minority class

2. Link to k nearest minority neighbors

3. Create a new case along each link

9 / 12



Imbalanced datasets

Imbalanced datasets are a major problem for ML algorithms

I Issues in training and evaluation

Methods for dealing with imbalanced datasets:

I Under-sampling the majority class

I Over-sampling the minority class

I SMOTE (Synthetic Minority Over-sampling TEchnique)
Creates new synthetic examples for the minority class

1. Take an example from the minority class

2. Link to k nearest minority neighbors

3. Create a new case along each link

9 / 12



Applying SMOTE

For the (binary) verb.dir trans dataset

I SMOTE implementation in Weka, default parameters

I Doubled the number of positive examples
(108 in 9789→ 216 in 9897)

TiMBL: Before and after SMOTE

AUC: 0.8041
(worse than TnT)

→ AUC: 0.9148
(matches TnT)

A great improvement, but. . .

The newly created synthetic examples aren’t linguistically sound!
(e.g. punctuation token with a verb POS feature)

10 / 12



Applying SMOTE

For the (binary) verb.dir trans dataset

I SMOTE implementation in Weka, default parameters

I Doubled the number of positive examples
(108 in 9789→ 216 in 9897)

TiMBL: Before and after SMOTE

AUC: 0.8041
(worse than TnT)

→ AUC: 0.9148
(matches TnT)

A great improvement, but. . .

The newly created synthetic examples aren’t linguistically sound!
(e.g. punctuation token with a verb POS feature)

10 / 12



Open questions and future work

The main question

Can a “supertagger” be better than the grammar?

Future work

I Move on to the next stable version of the databank

I Test more tools, better features, etc.

I n-best supertaggers

I Linguistically-aware SMOTE

I Integrate into PET

I . . .

11 / 12



Open questions and future work

The main question

Can a “supertagger” be better than the grammar?

Future work

I Move on to the next stable version of the databank

I Test more tools, better features, etc.

I n-best supertaggers

I Linguistically-aware SMOTE

I Integrate into PET

I . . .

11 / 12



Thank you!

12 / 12



AUC: Area Under (ROC) Curve

ROC (Receiver Operating Characteristics) graph:
Shows tradeoff between hit rates (tpr) and false alarm rates (fpr)

tpr =
positives correctly classified

total positives
fpr =

negatives incorrectly classified

total negatives

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fpr

tp
r

random
classifier

perfect
classifier

AUC

Return

1 / 1


	Introduction
	Datasets
	Experiments
	Final remarks
	Appendix
	Appendix


