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Introduction: Parsability

• Parsing with precision grammars has made great strides in terms of

scalability and coverage, but still room for improvement, esp. with

coverage

precision grammar = grammar which has been engineered to

model grammaticality (avoid overgeneration)

• Our approach to improving coverage = (off-line) lexical acquisition

based on chart mining

? relative “lifetime” and probability of different analyses provide

valuable insights into their plausibility
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Illustration of Chart Mining
Pr(S → NP VP) = 1.0

Pr(VP→ V NP) = 1.0

Pr(NP→ PN) = 0.5

Pr(NP→ ’the’ N) = 0.5

Pr(V → ’saw’) = 1.0

Pr(PN→ ’Kim’) = 1.0

Pr(N → ’saw’) = 1.0
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Introduction to Chart Parsing

• A chart is used to record the partial analysis during parsing

• Together with its variants, chart parser can be used for a variety of

grammar formalisms (CFG, TAG, LFG, HPSG, . . . )

• We use the agenda-driven bottom-up search strategy

• Constituent-based chart parser records potential constituents as

passive edges

• The size of the parsing chart can be reduced by local ambiguity

packing (based on certain “equivalence classes”)
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Methodology: General Approach

• Populate the chart with bottom-up search strategy

• Mine relevant features from the densely populated chart, even if a

full parse is not available

• Use customised set of chart-mined features as appropriate for task
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Subsumption-based Packing and Selective
Unpacking

• Packing under subsumption allows efficient storage of local

ambiguities

• Selective unpacking to mine relevant features

• Probabilities on each selectively-unpacked edge from discriminative

parse selection model (Toutanova et al., 2005)

• Dynamic programming used to decode theN -best (partial) readings

from packed parse forest
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Verb Particle Constructions

• Verb Particle Construction:

English Verb Particle Constructions (VPCs) consist of a head

verb and one or more obligatory (prepositional) particles

• We are interested in extracting:

? non-compositional VPCs: look up vs. battle on

? with valence: hand in vs. back off

• Dataset from LREC-2008-MWE shared task (Baldwin 2008)

? 4,090 candidate VPC triples (verb, particle, valence)

? up to 50 sentences containing the given VPC from BNC
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VPC Feature Engineering
Feature Description Examples

LE:MaxCons A lexical entry together with the maximal
constituent constructed from it

v - le:subjh,
v np le:hadj, ...

LE:MaxSpan A lexical entry together with the length
of the span of the maximal constituent
constructed from the LE

v - le:7,
v np le:5, ...

LE:MaxLevel A lexical entry together with the levels of
projections before it reaches its maximal
constituent

v - le:2,
v np le:1, ...

LE:MaxCRank A lexical entry together with the relative
disambiguation score ranking of its
maximal constituent among all MaxCons
from different LEs

v - le:4,
v np le:3, ...

PARTICLE The stem of the particle in the candidate
VPC

off
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Putting It All Together

his new toysoffshows
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Three VPC Tasks

Task Description

Gold VPC Determine the valence for a verb–preposition

combination which is known to occur as a non-

compositional VPC (i.e. known VPC, with unknown

valence(s))

full Determine whether each verb–preposition combination

is a VPC or not, and further predict its valence(s) (i.e.

unknown if VPC, and unknown valence(s))

VPC Determine whether each verb–preposition combination

is a VPC or not ignoring valence (i.e. unknown if VPC,

and don’t care about valence)
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Experimental Details

• PET parser (Callmeier 2001)

• English Resource Grammar (Flickinger 2002), version nov-06

• Unknown word handling with lexical type prediction model trained

on LOGON

• 4 dummy lexical entries:

v - le, v np le, v p le, v p-np le

• Features are mined from the parsing chart
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Experimental Details

• Probabilistic baseline:

P̃ (s|v, p) = P (s|v) · P (s|p) for s ∈ {intrans, trans, null}

• Benchmark: Charniak parser

majority vote over RB/IN/TO vs. RP for each valence

S

NP

NN

It

VP

VBZ

rubs

RB

off

% ...

S-BAR

NP

some skill

VP

VBN

rubbing

RP

off

!

15



Chart Mining-based Lexical Acquisition with Precision Grammars NAACL 2010

Experimental Details

• Probabilistic baseline:

P̃ (s|v, p) = P (s|v) · P (s|p) for s ∈ {intrans, trans, null}

• Benchmark: Charniak parser

majority vote over RB/IN/TO vs. RP for each valence

• Remove VPCs which are attested in WSJ Sections 1–21 from test

data on each iteration, for comparability with Charniak parser

• 5-fold cross-validation
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Results: GOLD

VPC Type
Näıve Baseline Charniak Parser Chart-Mining

P R F P R F P R F

Intrans-VPC .300 .018 .034 .549 .753 .635 .845 .621 .716

Trans-VPC .676 .348 .459 .829 .648 .728 .877 .956 .915

All .576 .236 .335 .691 .686 .688 .875 .859 .867
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Results: FULL/VPC

VPC Type
Näıve Baseline Charniak Parser Chart-Mining

P R F P R F P R F

Intrans-VPC .060 .018 .028 .102 .593 .174 .153 .155 .154

Trans-VPC .083 .348 .134 .179 .448 .256 .179 .362 .240

All .080 .236 .119 .136 .500 .213 .171 .298 .218

VPC .123 .348 .182 .173 .782 .284 .259 .332 .291
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Findings

• Chart mining superior to Charniak parser overall

Charniak parser much better over VPCs lexicalised in the

training data (unsurprisingly!) → potential for our method to

similarly benefit from lexicalisation

• full harder than due to 7/8 of candidates not in fact being VPCs

• Intransitive VPCs harder to extract than transitive
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Discussion

• Considerable scope for extra experimentation over other tasks

(MWEs and non-MWEs) and languages

• Grammar-based nature means particularly well suited to lexical

acquisition tasks over discontinuous lexemes/non-configurational

languages

• Unlexicalised nature, non-requirement of spanning parse means

suited to lexical acquisition over low-density languages/under-

developed grammars

• Applications beyond lexical acquisition (e.g. partial parsing)
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Conclusion

• Precision grammar-based chart mining method proposed

• Highly encouraging results achieved over VPC lexical acquisition

task

• Lots of scope for follow-up experimentation/applications beyond

lexical acquisition
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