Chart Mining-based Lexical Acquisition with Precision Grammars

Yi Zhang, Martinez Yi Jeremy Nicholson Yo ↓ DFKI GmbH and Saarland University ♡ University of Melbourne ◇ NICTA Victoria Research Laboratory

Introduction: Parsability

 Parsing with precision grammars has made great strides in terms of scalability and coverage, but still room for improvement, esp. with coverage

precision grammar = grammar which has been engineered to model grammaticality (avoid overgeneration)

- Our approach to improving coverage = (off-line) lexical acquisition based on chart mining
 - relative "lifetime" and probability of different analyses provide valuable insights into their plausibility

Illustration of Chart Mining

$\Pr(S \rightarrow NP VP)$	= 1.0
$\Pr(VP \rightarrow V NP)$	= 1.0
$\Pr(NP \rightarrow PN)$	= 0.5
$Pr(\mathtt{NP} ightarrow \texttt{'the'}, \mathtt{N})$	= 0.5

 $\Pr(V \rightarrow \text{'saw'}) = 1.0$ $\Pr(PN \rightarrow \text{'Kim'}) = 1.0$ $\Pr(N \rightarrow \text{'saw'}) = 1.0$

Introduction to Chart Parsing

- A chart is used to record the partial analysis during parsing
- Together with its variants, chart parser can be used for a variety of grammar formalisms (CFG, TAG, LFG, HPSG, . . .)
- We use the agenda-driven bottom-up search strategy
- Constituent-based chart parser records potential constituents as passive edges
- The size of the parsing chart can be reduced by local ambiguity packing (based on certain "equivalence classes")

Methodology: General Approach

- Populate the chart with bottom-up search strategy
- Mine relevant features from the densely populated chart, even if a full parse is not available
- Use customised set of chart-mined features as appropriate for task

Subsumption-based Packing and Selective Unpacking

- Packing under subsumption allows efficient storage of local ambiguities
- Selective unpacking to mine relevant features
- Probabilities on each selectively-unpacked edge from discriminative parse selection model (Toutanova et al., 2005)
- Dynamic programming used to decode the N-best (partial) readings from packed parse forest

Verb Particle Constructions

• Verb Particle Construction:

English Verb Particle Constructions (VPCs) consist of a head verb and one or more obligatory (prepositional) particles

• We are interested in extracting:

★ non-compositional VPCs: look up vs. battle on
★ with valence: hand in vs. back off

- Dataset from LREC-2008-MWE shared task (Baldwin 2008)
 * 4,090 candidate VPC triples (verb, particle, valence)
 - \star up to 50 sentences containing the given VPC from BNC

VPC Feature Engineering

Feature	Description	Examples
LE:MAXCONS	A lexical entry together with the maximal constituent constructed from it	vle:subjh, $v_np_le:hadj, \dots$
LE:MAXSpan	A lexical entry together with the length of the span of the maximal constituent constructed from the LE	$v_{-}le:7, v_{np}le:5, \dots$
LE:MaxLevel	A lexical entry together with the levels of projections before it reaches its maximal constituent	$v_{-}le:2, v_{np}le:1,$
LE:MAXCRANK	A lexical entry together with the relative disambiguation score ranking of its maximal constituent among all MaxCons	$v_{-le:4}, v_{np_{le:3}}, \dots$
PARTICLE	from different LEs The stem of the particle in the candidate VPC	$o\!f\!f$

Putting It All Together

Three VPC Tasks

Task	Description						
Gold VPC	Determine the valence for a verb-preposition combination which is known to occur as a non- compositional VPC (i.e. known VPC, with unknown valence(s))						
FULL	Determine whether each verb-preposition combination is a VPC or not, and further predict its valence(s) (i.e. unknown if VPC, and unknown valence(s))						
VPC	Determine whether each verb–preposition combination is a VPC or not <i>ignoring valence</i> (i.e. unknown if VPC, and don't care about valence)						

Experimental Details

- PET parser (Callmeier 2001)
- English Resource Grammar (Flickinger 2002), version nov-06
- Unknown word handling with lexical type prediction model trained on LOGON
- 4 dummy lexical entries:

*v*_-_*le*, *v*_*np*_*le*, *v*_*p*_*le*, *v*_*p*-*np*_*le*

• Features are mined from the parsing chart

Experimental Details

• Probabilistic baseline:

 $\tilde{P}(s|v,p) = P(s|v) \cdot P(s|p) \text{ for } s \in \{intrans, trans, null\}$

Benchmark: Charniak parser

majority vote over RB/IN/TO vs. RP for each valence

Experimental Details

• Probabilistic baseline:

 $\tilde{P}(s|v,p) = P(s|v) \cdot P(s|p) \text{ for } s \in \{intrans, trans, null\}$

• Benchmark: Charniak parser

majority vote over RB/IN/TO vs. RP for each valence

- Remove VPCs which are attested in WSJ Sections 1–21 from test data on each iteration, for comparability with Charniak parser
- 5-fold cross-validation

Results: GOLD

VPC Type	Naïve Baseline			Charniak Parser			Chart-Mining		
	Р	R	F	Р	R	F	Р	R	F
Intrans-VPC	.300	.018	.034	.549	.753	.635	.845	.621	.716
Trans-VPC	.676	.348	.459	.829	.648	.728	.877	.956	.915
All	.576	.236	.335	.691	.686	.688	.875	.859	.867

Results: FULL/VPC

VPC Type	Naïve Baseline			Charniak Parser			Chart-Mining		
	Р	R	F	Р	R	F	Р	R	F
Intrans-VPC	.060	.018	.028	.102	.593	.174	.153	.155	.154
Trans-VPC	.083	.348	.134	.179	.448	.256	.179	.362	.240
All	.080	.236	.119	.136	.500	.213	.171	.298	.218
VPC	.123	.348	.182	.173	.782	.284	.259	.332	.291

Findings

- Chart mining superior to Charniak parser overall
 - Charniak parser much better over VPCs lexicalised in the training data (unsurprisingly!) \rightarrow potential for our method to similarly benefit from lexicalisation
- FULL harder than due to 7/8 of candidates not in fact being VPCs
- Intransitive VPCs harder to extract than transitive

Discussion

- Considerable scope for extra experimentation over other tasks (MWEs and non-MWEs) and languages
- Grammar-based nature means particularly well suited to lexical acquisition tasks over discontinuous lexemes/non-configurational languages
- Unlexicalised nature, non-requirement of spanning parse means suited to lexical acquisition over low-density languages/underdeveloped grammars
- Applications beyond lexical acquisition (e.g. partial parsing)

Conclusion

- Precision grammar-based chart mining method proposed
- Highly encouraging results achieved over VPC lexical acquisition task
- Lots of scope for follow-up experimentation/applications beyond lexical acquisition