agree grammar engineering environment

status update and parser evaluation (preliminary)
http://wiki.delph-in.net/moin/AgreeTop

Glenn Slayden
DELPH-IN Summit, June 2011

Ma.Sci. research at the University of Washington

Supervised by Emily Bender

agree system overview

DL reader/parser
‘ype hierarchy manager
'FS storage

Unifiers — incremental, n-way

_exicon manager
— Weak GC references on lexical entries

Concurrent chart parser

— Morphological analyzer
— DELPH-IN parser optimizations

agree system overview

Sentence submitter

Interactive command processor

[incr tsdb()] database support (preliminary)
Grammar configuration files

— reads either LKB- or PET-format configuration files
— custom tokenizer modules attached at runtime

agree Mono

e agree is primarily tested and developed on Windows
(.NET runtime environment)

e Mac and Linux builds have also been tested:

File Edit View Terminal Help

glenn@linux:~/analytical-grammar$ mono agree.exe /home/glenn/erg/erg.gee -parse "The child has the flu."
Loading grammar file

loaded 52 quick-check paths

types 4821 closed 7785 glb 2964 ops 7799129

Regression test succeeded.

garbage report disabled on Mono
Parsing...

© 0 [The child has the flu.] 1 parses

S (NP (DET N) VP (V NP (DET N)))

garbage report disabled on Mono

glenn@linux:~/analytical-grammar$

agree WPF

 For Windows, there is a graphical client application

 This will not be available on Mono

Guoews Fuet vew
Grammar Object Browsar
< e1g LinGO Englsh Rescurce Grammas
ypes (Bxpanded)
eatures (192)
Entnes (Expanded)

Pe1-0:11E7EF-hagy 5 pepa.rukt
PC1-O1IF3FB-aG, 5 nopoe. e
P15 3.0ps.fukt
PeL-OL1FER N subjhmc.rude
P10 1FDBR-subjh_me_rde
Pcl-OL1FFCS-subjh me_rude
PE1-0:120256 b rule
P1-0:120853-hac s

 pe2 "cans are

pe2
4 pe3 the cats ave cute”
93-0:12195F-subih. < e

Interactive.

Application started.
acaee = another Grammar encineering environment 1/1/2000 1200:00 AM debug 32-bit
acaee engine 1/1/2000 1200:00 AM debug 32-bit

Begin loading ‘D\Programming\analytical-grammar\erg.gee’

Computing Greatest Lower Bound closure of he type hierarchy,

Loading fel ped: parse chant

Resolve 5
Parse type] |14 cats e cute
Losding of |[21778 285) 121830 T256 i a1}
Loadling g | 5u6neame sl ns s nopur e st nonen sl subih name k] fn o wh e ke bt e sup)
Loading le| |[iZ15a% 290 izm5a
Scanning | | in.non,uhreLrue s nonme s in o wh re e
103009 0 | the cats are
Loading sq | -
Parse ent] |[21603 i 16CF ey
ousing 6] | ohnemms e e it e e b s ek s rerme e
Expanding || 0 oc 50
lm:’;m": s, el s orenc e s oo e mok e
Loaded D (12148 1
pel: 14 parses) | Sonreneheln
1g > parse catl [the cats cats are are
ez 1 parsels) | | yiss | (21798 1587 569 12156
g > parse thel | hupec rie]rag np.) sl rle_wh it sy o,] s me e

oS 1 pariels) nes 121600
S e e fn ponwh selnse
2175 T

s e rde] [subh noneme e,
121500

sy poeme, e fin_pon,ah rel nie)

10094

s [izise | [azasac
Aol 3

121540 e

iex. 1o atiued) pace,rg. e - vp.ebps:
2 12165

b e

605
radj v e |extrcormp e

pel-pel-0:11E6D0-(subjh_me_rule ©1033973)

[pe1-pel-0:11E447-(subjh_me_rule @976201)

He came from Harstad with Hurtigruta.

11E6D0
subjh_me_rule

He came from Harstad with Hurtigruta.

16447
subjh_me_rule;

He came from Harstad with came from Harstad with Hurtigruta.

£sD1
g i_unsl_rule,

He came from Harstad with

came from Harstad with Hurtigruta

116227
heomp_rule

2 5L The s aroued Bargen s denstly
peLonioe

PELOTIOAMA N
PeLO1IOAD-(kag.rp e &

Harstad Hurtigruta

pel-0:1166D0-(subjh_me_rule @1033973)

vp.elipss expl |sa
T 1556
xad)j,vp, e s assiscn
121569

the cats are

g > [porse the cats s cute

execute

He came from Harstad «<ame from Harstad with from Harstad with Hurtigruta. He came from Harstad came from Harstad with from Harstad with Hurtigruta.
11395
had_i_uns! rule
He came from came from Harstad | from Harstad with |Harslad with Hurtigruti He came from came from Harstad from Harstad with ‘ Harstad with Hurtigru
He came came from from Harstad Harstad with with Hurtigruta. He came came from from Harstad Harstad with with Hurtigruta.
1£280 11£182 11£280 11E182
hcomp_rule| heomp_rule| heomp,_rule! heomp_rule)
1E070 E129 | £271
oare_npq_rule] | |hoptcomp_rule [proper_np.rule
10DeCt 112725 11339! 113640
he Iv_pst_ ol from n_sq_ilr
|narstad_n1
he came [from | [Harstad |

(£

The

peputtec.

popuated.

o

Serely

popuatea

agree concurrent unification

e All published TFSes are immutable

 Both “unifiers” are thread-safe
— To be precise, there is no “unifier”

— Rather, being passive algorithms, thread safety
means that they are agnostic about concurrent
use by the parser

— Any number of top-level unifications can be
underway at once

— There is no way to disable thread-safety; single-
threaded operation is configured in the parser

agree: parsing sequence

Each parse chart is thread-safe, specifically, lock-
free

— This differs from van Louhizen, where each thread had
its own chart, and these charts later had to be
coordinated

— Task agenda is not explicitly scheduled

Parser respects a configurable task concurrency
limit

— The default is unlimited

— For single-threaded tests, this is set to 1.

Parser introduces one task per morphology stack
— Parallel morphological analysis

Chart dependencies: always single-threaded

lock-free parse chart
interlocked global sequence

* When a new passive edge is generated, it is
given an atomic sequence stamp

e The parser queues two tasks:

1. Generate new active edges for the passive edge

e New active edges also get atomically stamped

¢ They gather their retroactive passive edges

s That is, passive edges with a lower sequence stamp

2. Send the passive edge to subscribed active edges

e That s, active edges with a lower sequence stamp

agree: packing

e Ambiguity packing

— Parallel implementation of Oepen and Carroll
2000

— Proactive/retroactive packing; subsumption and
equivalence

e The packing/unpacking code is new in the
past two weeks; there may be some bugs
remaining

agree: parser optimizations

e Quick-check

e Key-driven (bidirectional)
 Chart dependencies
 Ambiguity packing

e Rule pre-check filter

e Spanning only rules
Morphology features:

e Stand-off input tokenization
e Arbitrarily overlapping input token hypotheses
e Inflection rule RegEx

* But not yet:
— TMR, CM, REPP, etc.

agree concurrency: pipeline submitter

The lock-free parse chart and concurrent unification
capabilities are inherent to the design of the system

These features are relevant for applications requiring the
fastest possible results for a single parse

For batch processing, agree also has an integrated concurrent
sentence submitter

— The submitter operates within the same process,
referencing the same grammar

— Avoids the overhead of multiple OS processes

— Avoids redundant grammar loading which is wasteful of
space and time

agree concurrency: grammars and parsing

e agree also supports loading and parsing

processing multiple grammars within the same
process

* This ability is designed for single-process machine
translation scenarios (future work)

 Parse charts are independent and can be
individually retained
— The system can simultaneously hold, display, and

report on multiple independent parse charts for
interactive comparison, etc.

agree concurrency. summary

In agree,

 Multiple concurrent unifications can operate on...
e ...multiple concurrent, diverse parsing tasks, within...
e ...multiple parse charts, referencing...

e ...0Ne or more grammars...

e ...per OS process...

e (...of which you could run more than one)

Evaluation methodology

ERG rev. 8962
Hike corpus subset (287/330)

Subset was originally based on LKB’s ability to exhaustively unpack and
also minus sentences containing numerals
http://www.agree-grammar.com/corpora/hike/hike-input-PET.txt

Identical derivations from all parsers for all tests
Exhaustive unpacking
— agree currently does not support parse selection

OS (on pluggable hard drive; swapped into the same machine)

— LKB, PET: Linux x64
$ cheap packing=7 -cm english.grm < hike-input-PET.txt
— agree: Windows Server 2008 x64, .NET 4.0, gcServer

Hardware: 8-way (2 x Xeon 5460), 3.17GHz, 32GB

Test models

e Model 1: batch processing

— Since any parser can be configured sentence
pipelining, eliminate this variation

— agree’s intrinsic multi-threading was judged
essentially similar in effect, so for these tests, parser
task concurrency is limited to 1

e Model 2: real-time requirement

— Sentence pipelining is outside the model definition
and is therefore disallowed

— Any intrinsic parser advantages which are helpful
(native code, multi-threading) are permitted

Cross-parser evaluation, log t

Model 1: batch processing requirement
agree constrained to single-threaded, pipeline 1

100 A

- Parse Time (sec.)
= o

—_

- LKB

- PET
agree .

—Expon. (LKB)

—Expon. (PET) * 4 . °

Expon. (agree)

>
(m] B ¢

0o 0o 0 B EE) O

LKB - 2h, 41:25*

agree - 3:04

]

0O OO0 D@

8

PET-1:47

8

0.01 -

6 9 12 1I5 1l8
Sentence length (words)

21

Parse Time (sec.)
o S

e
9]
1

0.05 -

Cross-parser evaluation, log t

Model 2: single-sentence real-time requirement
all systems: no sentence pipelining

* LKB LKB - 2h, 41:25*
- PET .o :

* agree
—Expon. (LKB)
—Expon. (PET)

—Expon. (agree)

= o

PET"- 1:47 _

@0
L] O ®
*

¥
. agree - 0:42

* @ 0B 4080y De0O O0ID e O

§
i
]
:

¢ Bl o0 @ °

3
0.005 -

12 15 1I8 2I1
Sentence length (words)

Model 2: long sentence result

e Parse 10 times, with full packing and exhaustive unpacking:

Contact lenses come in small, light packages that
are easy to ship through the mail and they
require frequent replacement by the user.

67,716 54.46 5.45
agree, n-way 67,716 36.09 3.61

e Concurrency allows agree to overcome the penalty of
operating in a managed runtime environment and parse this
long sentence 34% faster than a native-code implementation

0.5

secC.

0.05

0.005

Non-pipelined agree Parser Task Scaling

184sec 1

16
40.17 sec

7 12 words 17 22

agree parser scaling efficency

throughput overall, ref. N;ag=1

—e—Parser tasks
B Parser task efficiency

—4—Submitter tasks

/ throughput per CPU

O Submitter efficiency

——Linear (Parser task efficiency)

55% at Nyag=8

—— Linear (Submitter efficiency)

‘\Q

| [[

of tasks

agree best batch configuration

The parsing sequence has single-threading choke
points (i.e. chart dependencies)

Therefore, the best configuration | found so far
for batch processing with agree is: 12 parser tasks
(limit), pipeline 2

In accordance with the goal-driven test

definitions, this configuration is not represented
in either of the two parser test models

With these settings, agree parses and
exhaustively unpacks ‘Hike’ in 35.62 sec on the
reference machine

Future work

Characterize parser memory use
Restore 43 Hike sentences and re-test

agree parser features
— Token mapping rules
— Generic LE instantiation
— parse selection
Generation

Further development of GUI

...effort thus far limited by the desire to invest time in tools that
also work on Linux

DELPH-IN feedback...
— Mike has volunteered to take a look at the Mono build

References

Ulrich Callmeier. 2001. Efficient Parsing with Large-Scale Unification
Grammars. MA Thesis, Universitat des Saarlandes - Fachrichtung
Informatik.

Ulrich Callmeier. 2000. PET: a platform for experimentation with
efficient HPSG processing techniques. Natural Language
Engineering 6(1): 99-107.

Rebecca Dridan. 2010. Using Lexical statistics to improve HPSG
Parsing. PhD Thesis, Universitat des Saarlandes.

Dan Flickinger (2000). English Resource Grammar. In
Flickinger, Oepen, Tsujii, Uszkoreit, eds.

Bernd Kiefer, Hans-Ulrich Krieger, John Carroll, and Rob Malouf. 1999.
A Bag of Useful Techniques for Efficient and robust Parsing. In Proc.

of the 37th annual meeting of the Association for Computational
Linguistics. 473-480

References

Robert Malouf, John Carroll, and Ann Copestake. 2000. Robert
Malouf, John Carroll, and Ann Copestake. 2000. Effcient feature
structure operations witout compilation. Natural Language
Engineering, 1(1):1-18.

Marcel P. van Lohuizen. 2001. A generic approach to parallel chart
parsing with an application to LinGO. Proc. of the 39th Meeting of
the Association for Computational Linguistics.

Marcel P. van Lohuizen. 1999. Parallel processing of natural language
parsers. In PARCO '99.

Marcel P. van Lohuizen. 2000. Exploiting parallelism in unification-
based parsing. In Proc. of the Sixth International Workshop on
Parsing Technologies (IWPT 2000), Trento, ltaly.

Stephan Oepen and John Carroll. 2000. Ambiguity packing in
constraint-based parsing - practical results. In Proceedings of the
1st Conf. NAACL, pages 162-169, Seattle, WA.

