
agree grammar engineering environment
status update and parser evaluation (preliminary)

http://wiki.delph-in.net/moin/AgreeTop

Glenn Slayden
DELPH-IN Summit, June 2011

Ma.Sci. research at the University of Washington
Supervised by Emily Bender



agree system overview
• TDL reader/parser
• Type hierarchy manager
• TFS storage
• Unifiers – incremental, -way
• Lexicon manager

– Weak GC references on lexical entries
• Concurrent chart parser

– Morphological analyzer
– DELPH-IN parser optimizations



agree system overview
• Sentence submitter
• Interactive command processor
• [incr tsdb()] database support (preliminary)
• Grammar configuration files

– reads either LKB- or PET-format configuration files
– custom tokenizer modules attached at runtime



agree Mono
• agree is primarily tested and developed on Windows 

(.NET runtime environment)
• Mac and Linux builds have also been tested:



agree WPF
• For Windows, there is a graphical client application
• This will not be available on Mono



agree concurrent unification

• All published TFSes are immutable
• Both “unifiers” are thread-safe

– To be precise, there is no “unifier”
– Rather, being passive algorithms, thread safety 

means that they are agnostic about concurrent 
use by the parser

– Any number of top-level unifications can be 
underway at once

– There is no way to disable thread-safety; single-
threaded operation is configured in the parser



agree: parsing sequence
• Each parse chart is thread-safe, specifically, lock-

free
– This differs from van Louhizen, where each thread had 

its own chart, and these charts later had to be 
coordinated

– Task agenda is not explicitly scheduled
• Parser respects a configurable task concurrency 

limit
– The default is unlimited
– For single-threaded tests, this is set to 1.

• Parser introduces one task per morphology stack
– Parallel morphological analysis

• Chart dependencies: always single-threaded



lock-free parse chart
interlocked global sequence

• When a new passive edge is generated, it is 
given an atomic sequence stamp

• The parser queues two tasks:
1. Generate new active edges for the passive edge

• New active edges also get atomically stamped
 They gather their retroactive passive edges
 That is, passive edges with a lower sequence stamp

2. Send the passive edge to subscribed active edges
• That is, active edges with a lower sequence stamp



agree: packing
• Ambiguity packing

– Parallel implementation of Oepen and Carroll 
2000

– Proactive/retroactive packing; subsumption and 
equivalence

• The packing/unpacking code is new in the 
past two weeks; there may be some bugs 
remaining



agree: parser optimizations
• Quick-check
• Key-driven (bidirectional)
• Chart dependencies
• Ambiguity packing
• Rule pre-check filter
• Spanning only rules
Morphology features:
• Stand-off input tokenization
• Arbitrarily overlapping input token hypotheses
• Inflection rule RegEx
• But not yet:

– TMR, CM, REPP, etc.



agree concurrency: pipeline submitter

• The lock-free parse chart and concurrent unification 
capabilities are inherent to the design of the system

• These features are relevant for applications requiring the 
fastest possible results for a single parse

• For batch processing, agree also has an integrated concurrent 
sentence submitter
– The submitter operates within the same process, 

referencing the same grammar
– Avoids the overhead of multiple OS processes
– Avoids redundant grammar loading which is wasteful of 

space and time



agree concurrency: grammars and parsing

• agree also supports loading and parsing 
processing multiple grammars within the same 
process

• This ability is designed for single-process machine 
translation scenarios (future work)

• Parse charts are independent and can be 
individually retained
– The system can simultaneously hold, display, and 

report on multiple independent parse charts for 
interactive comparison, etc.



agree concurrency: summary

In agree, 
• Multiple concurrent unifications can operate on…
• …multiple concurrent, diverse parsing tasks, within…
• …multiple parse charts, referencing…
• …one or more grammars…
• …per OS process…
• (…of which you could run more than one)



Evaluation methodology
• ERG rev. 8962
• Hike corpus subset (287/330)

Subset was originally based on LKB’s ability to exhaustively unpack and
also minus sentences containing numerals
http://www.agree-grammar.com/corpora/hike/hike-input-PET.txt

• Identical derivations from all parsers for all tests
• Exhaustive unpacking

– agree currently does not support parse selection
• OS (on pluggable hard drive; swapped into the same machine)

– LKB, PET: Linux x64
$ cheap packing=7 -cm english.grm < hike-input-PET.txt

– agree: Windows Server 2008 x64, .NET 4.0, gcServer
• Hardware: 8-way (2 × Xeon 5460), 3.17GHz, 32GB



Test models
• Model 1: batch processing

– Since any parser can be configured sentence 
pipelining, eliminate this variation

– agree’s intrinsic multi-threading was judged 
essentially similar in effect, so for these tests, parser 
task concurrency is limited to 1

• Model 2: real-time requirement
– Sentence pipelining is outside the model definition 

and is therefore disallowed
– Any intrinsic parser advantages which are helpful 

(native code, multi-threading) are permitted



Cross-parser evaluation,
Model 1: batch processing requirement
agree constrained to single-threaded, pipeline 1



Cross-parser evaluation,
Model 2: single-sentence real-time requirement

all systems: no sentence pipelining



Model 2: long sentence result
• Parse 10 times, with full packing and exhaustive unpacking:

• Concurrency allows agree to overcome the penalty of 
operating in a managed runtime environment and parse this 
long sentence 34% faster than a native-code implementation

Contact lenses come in small, light packages that 
are easy to ship through the mail and they 
require frequent replacement by the user.

parser derivations job total sec. per parse, sec.

PET 67,716 54.46 5.45

agree, -way 67,716 36.09 3.61



40.17 sec

184 sec





agree best batch configuration
• The parsing sequence has single-threading choke 

points (i.e. chart dependencies)
• Therefore, the best configuration I found so far 

for batch processing with agree is: 12 parser tasks 
(limit), pipeline 2

• In accordance with the goal-driven test 
definitions, this configuration is not represented 
in either of the two parser test models

• With these settings, agree parses and 
exhaustively unpacks ‘Hike’ in 35.62 sec on the 
reference machine



Future work
• Characterize parser memory use
• Restore 43 Hike sentences and re-test
• agree parser features

– Token mapping rules
– Generic LE instantiation
– parse selection

• Generation
• Further development of GUI

…effort thus far limited by the desire to invest time in tools that 
also work on Linux

• DELPH-IN feedback…
– Mike has volunteered to take a look at the Mono build



References
Ulrich Callmeier. 2001. Efficient Parsing with Large-Scale Unification 

Grammars. MA Thesis, Universität des Saarlandes - Fachrichtung
Informatik. 

Ulrich Callmeier. 2000. PET: a platform for experimentation with 
efficient HPSG processing techniques. Natural Language 
Engineering 6(1): 99-107.

Rebecca Dridan. 2010. Using Lexical statistics to improve HPSG 
Parsing. PhD Thesis, Universität des Saarlandes.

Dan Flickinger (2000). English Resource Grammar. In 
Flickinger, Oepen, Tsujii, Uszkoreit, eds.

Bernd Kiefer, Hans-Ulrich Krieger, John Carroll, and Rob Malouf. 1999. 
A Bag of Useful Techniques for Efficient and robust Parsing. In Proc. 
of the 37th annual meeting of the Association for Computational 
Linguistics. 473-480 



References
Robert Malouf, John Carroll, and Ann Copestake. 2000. Robert 

Malouf, John Carroll, and Ann Copestake. 2000. Effcient feature 
structure operations witout compilation. Natural Language 
Engineering, 1(1):1-18. 

Marcel P. van Lohuizen. 2001. A generic approach to parallel chart 
parsing with an application to LinGO. Proc. of the 39th Meeting of 
the Association for Computational Linguistics. 

Marcel P. van Lohuizen. 1999. Parallel processing of natural language 
parsers. In PARCO '99. 

Marcel P. van Lohuizen. 2000. Exploiting parallelism in unification-
based parsing. In Proc. of the Sixth International Workshop on 
Parsing Technologies (IWPT 2000), Trento, Italy. 

Stephan Oepen and John Carroll. 2000. Ambiguity packing in 
constraint-based parsing - practical results. In Proceedings of the 
1st Conf. NAACL, pages 162–169, Seattle, WA.


