

Deep DARE

German Research Center for Artificial Intelligence (DFKI) Language Technology Lab

Peter Adolphs, Feiyu Xu, Hans Uszkoreit, Li Hong

Presenter: Yi Zhang

German Research Center for Artificial Intelligence

Introduction – What is Relation Extraction?

- Task: find mentions of specific semantic relations between entities in raw text
- Example relations: birthplace, marriage, management succession, prize winning, …
- Approximation of full natural language understanding: focussed on a limited set of relevant semantic relations

Generation Strategy ... Investigation by Paul Vladuchick

- DARE: <u>Domain Adaptive</u> <u>Relation Extraction</u> (Xu, 2008)
- Especially suited for relations with higher arity
- Learns relation extraction rules from raw text
- Bootstrapping framework
- Minimally supervized

- Related Work:
 - Adapted from
 DIPRE (Brin, 1998) and
 Snowball (Agichtein & Gravano, 2000)
 - Extended and enriched with linguistic analysis

Introduction – Linguistic Challenges

- 38.2% of extraction errors in Xu (2008) are due to errors made by the dependency parser (MINIPAR)
- More detailed analyses are required for recognizing and treating valency-changing operations on the semantics (modality, negation, reports, and their scopal interaction)
- Goal: increase precision and analysis depth by using deep NLP methods (HPSG)

😧 "Varios Series - 72" by Jef Harri

Requirements:

- A target relation
- Some instances of the target relation → "semantic seeds"
- Corpus with named-entity and parsing annotations

Two main phases:

- Rule learning: relation extraction rules are learned from free text
- Relation extraction: relation extraction rules are used to extract new relation instances

DELPH-IN Summit 2011

DARE – Overview Rule Learning

- For each seed, find sentences mentioning its arguments
- Find subtrees connecting the seed's arguments
- Postulate rules for the relation and its projections by generalizing the subtrees
- Optionally rank and filter the rules according to their complexity and productivity

DARE – Overview Relation Extraction

- Use learned relation extraction rules to extract relation instances
- Bootstrapping:
 - Use new relation instances to learn further rules
 - Continue until a fixpoint is reached
- Once learned, rules can be used for relation extraction on running text

NEWS	5
Rule 1	

DARE – Rule Format

- Relation extraction rules represented with feature structures
- Components:
 - Rule name
 - Rule body: the actual structure to be matched
 - Output: the target semantics
- Compositional rule format, allowing for subrule calls (recognizing relation projections)

MINIPAR (Lin, 2003)

- Broad-coverage parser for English
- Constraint-based parsing algorithm (reminiscent of chart parsing with rewrite rules)
- Parse results available in dependency format
- Partial results possible

Parsers – Stanford Parser

- Stanford Parser (Klein & Manning, 2003)
- Package with different parse strategies
- We use the unlexicalized PCFG parser
- Trees converted to labelled dependency representation (de Marneffe et al, 2006; de Marneffe & Manning, 2008)
- Tree simplifications tailored towards semantic tasks: functional edges collapsed

Parsers – PET + ERG

- We parsed with PET + ERG (Callmeier, 2002; Flickinger, 2000)
- DMRS (Copestake, 2008) is a dependency-style semantic representation
- We applied further simplifications to yield classical token-to-token dependencies
- Resulting structures are often genuine graphs

- Adequate analyses of linguistic phenomena such as relative clauses or subject or object control constructions require that some nodes are shared, i.e. a graph structure.
- We extended the original DARE rule representation to match arbitrary graph substructures and adapted the rule learning procedure accordingly.

Rule components:

- Rule name
- Rule body: Graph G=(N,E)
 - N: set of nodes with (possibly underspecified) features such as stem, part-of-speech or NE type
 - E: set of (possibly labelled) edges
- Output: mapping from argument nodes to target semantics

- ✤ For a given *n*-ary seed S = ($s_1, ..., s_n$), find all sentences that mention the seed's arguments.
- For each sentence with dependency graph G, collect set T of all terminal nodes that represent arguments in S.
- ✤ For each acceptable combination of seed argument terminal nodes $C = \{t_1, ..., t_n\}$ ($m \ge 2$), find a shortest path S_i between t_i and t_{i+1} for 0 < i < m.
- ✤ Extract the pattern subgraph P_C = (N_C, E_C) from G with N_C = U_i N(S_i) where N(S_i) is the set of nodes in path S_i E_C = U_i E(S_i) where E(S_i) is the set of edges in path S_i
- Generalize nodes in N_C: keep stem, part-of-speech and named-entity type where applicable

Experiments – Task and Data

Target relation: prize winning

- Who has won which prize for which achievement in which year?
- Arguments:
 <winner, prize, field, year>

Nobel Prize award corpus

- Nobel Prize because gold relation instances are easily available
- Already used in previous experiments (Xu et al., 2007)
- Newswire texts (BBC, CNN and New York Times)
- Contains only potentially relevant documents (mentioning "Nobel")
- Size: 2,864 relevant documents;
 2,896 relevant sentences
- Annotated for event mentions

Experiments – Processing Setup

Preprocessing:

- Sentence and token segmentatoin (jTok)
- Named entity recognition (SProUT, OpenCalais)
- Coreference analysis (SProUT)

Parsers:

- MINIPAR 0.5
- Stanford Parser 1.6.5
- ERG 1010 with chart mapping, TnT unknown word handling

Parse Coverage:

- MINIPAR: 99.79%
- Stanford Parser: 99.79%
- PET + ERG: 71.71% (less robust on preprocessing errors)

Experiments – General Procedure

- Learn and apply rules based on dependency structures for different parsers separately
- Split corpus into learning and evaluation corpus
 - Equal-sized learning and evaluation corpora
 - Allows to assess reusability of relation extraction rules
 - Previous results evaluated learning performance on whole corpus
- Experiments with different seeds:
 - exactly one semantic seed <Ahmed Zewail, Nobel, chemistry, 1999>
 - 99 randomly chosen Nobel prize winning events
 - all Nobel prize winning events

DELPH-IN Summit 2011

Experiments – Evaluation Setup

Mention evaluation:

- Evaluate pairs of <corpus sentence, extracted relation instance> against gold
- Extraction considered successful if compatible with gold (extractions of lower arity are not penalized)
- Measures: precision, recall, f-score and average arity of extractions
- NB: Previous results based on extracted relation instances only

Experiments – Evaluation (1)

Precision

Recall

Average Arity

F-Score

2,86 65,00% 2,84 60,00% 2,82 2,8 55,00% 2,78 Tree-Rules Tree-Rules 50,00% 2,76 2,74 45,00% 2,72 40,00% 2,7 MINIPAR Stanford ERG **MINIPAR** Stanford ERG Corpus: All relevant sentences 1 semantic seed Tree rules only **DELPH-IN Summit 2011**

Experiments – Evaluation (2)

Recall

Average Arity

F-Score

Precision

MINIPA

Experiments – Evaluation (3)

Stanford

ERG

F-Score

Precision

84,00% 82,00%

80,00%

78,00%

76,00%

70,00%

65,00% 2,92 2,9 2,88 60,00% 2,86 1 Seed 1 Seed 2,84 55,00% 99 Seeds 99 Seeds 2,82 2,8 All Seeds All Seeds 50,00% 2,78 2,76 45,00% 2,74 2,72 40,00% 2,7 **MINIPAR** Stanford ERG **MINIPAR** Stanford ERG Corpus: All relevant sentences 1 / 99 / all seeds Graph rules only **DELPH-IN Summit 2011**

Average Arity

74,00% 72,00%

MINIPAR

Experiments – Evaluation (4)

Precision

Average Arity

F-Score

2,92 65,00% 2,9 2,88 60,00% 2,86 1 Seed 1 Seed 2,84 99 Seeds 55,00% 99 Seeds 2,82 2,8 All Seeds All Seeds 50,00% 2,78 2,76 45,00% 2,74 2,72 40,00% 2,7 **MINIPAR** Stanford ERG **MINIPAR** Stanford ERG Corpus: All relevant HPSG-parsable sentences 1 / 99 / all seeds Graph rules only **DELPH-IN Summit 2011**

- Systematic differences of coordination analysis for MINIPAR / Stanford Parser vs ERG
 - MINIPAR / Stanford Parser: first conjunct of dependent conjunctions are linked to the head, remaining conjuncts are linked to first conjunct with a conjunction edge
 - ERG: extra conjunction node, conjuncts are linked to the conjunction node
- Effect:
 - MINIPAR / Stanford Parser RE rules learned from a structure without conjunction are also used to extract first conjunct in conjunction structures
 - Conjunction seeds may help to learn more complex RE rules for conjunction structures in the bootstrapping
- Solution: interpret coordination structures during RE

Experiments – Evaluation (5)

Precision

Recall

Average Arity

-COORD-EXTR.,

-COORD-EXTR...

-COORD-EXTR.,

+COORD-EXTR.,

■+COORD-EXTR...

■+COORD-EXTR...

1 Seed

99 Seeds

All Seeds

1 Seed

99 Seeds

All Seeds

- -COORD-EXTR., 1 Seed
- -COORD-EXTR.,
 99 Seeds
- -COORD-EXTR., All Seeds
- +COORD-EXTR., 1 Seed
- +COORD-EXTR., 99 Seeds
- +COORD-EXTR., All Seeds

F-Score

Experiments – Summary

- Graph rules are beneficial for relation extraction with ERG
- Relation extraction on top of ERG analyes delivers highest precision results, but on the cost of recall; cf. for 1 seed:
 - Precision: +3.8% for ERG if compared to Stanford Parser
 - Recall: -18.6% for ERG if compared to Stanford Parser
- Rule learning & relation extraction on HPSG-parsable corpus:
 - Comparable results for Stanford Parser (precision even improves)
 - Stanford Parser still performs best
- Extraction from coordinations:
 - All parsers benefit from this extraction strategy: recall and f-score improve
 - Precision improves for Stanford Parser
 - Precision drops surprisingly for ERG (reading selection?)

- ERG can be successfully employed for substantially improving precision in the relation extraction task
- Stanford typed dependency relations are better suited out of the box for semantic applications such as DARE
- Graph-based relation extraction rules set the ground for hybrid relation extraction systems
 - Represent annotations by arbitrary parsers in an annotation graph, on which graph-based relation extraction rules operate
 - Combination of several parsers promises to overcome coverage gaps of HPSG (by using more shallow parsers) and benefiting from more detailed analyses (when using HPSG)

- Pin down advantages of each parser to distinguishing criteria, in order to learn RE rules from the merged output of a parser ensemble
- Use ERG analyses to detect valancy-changing semantic operations such as modality, negation and their scopal interactions

THANK YOU FOR YOUR ATTENTION

Questions?

