
Variadic (-way) Unification
status update and preliminary results

Glenn Slayden
DELPH-IN Summit, June 2011

Ma.Sci. research at the University of Washington
Supervised by Emily Bender

Summary
• Unification is by far the most expensive part of parsing
• PET and LKB implement Tomabechi’s (1991, 1992) “quasi-

destructive” method
• I investigate a new algorithm where the fundamental

recursive function accepts node arguments in variable arity
• The method is implemented in agree, a new DELPH-IN parser
• Early results are promising, especially during unpacking,

where all rule daughter positions can be unified at once
• ݊-way unification outperforms a Wroblewski (1987)-style

incremental unifier in controlled intra-system evaluation
• Unification satisfiability checker pseudo-code:

http://www.agree-grammar.com/n-way-unification/satisfiability.html

What makes TFS unification difficult?

• Coreference spreading: The unification of t1 and t2
equates two coreference equivalence classes which
remain distinct within t1

• This process can continue to chains of arbitrary
length

Pereira 1985
“A Structure-sharing representation for unification-based grammar formalisms”

• Basic unification algorithm (from theorem
proving work in the early 1970s) remains
unchanged

• Instead, the underlying graph representation is
changed to reduce the amount of new structure
written

• This is done by maintaining each TFS as an
tuple

• Applying updates incurs penalties when the
derived instance is accessed

Wroblewski 1987
“Nondestructive Graph Unification”

• “Incremental” unification
• Build new structure as needed to avoid

destroying old
• Generation counter invalidates all temporary

structures associated with failed work in a single
operation

• Incremental algorithms inherently suffer from
“over-copying”

☞ For comparison with -way, agree includes a
(thread-safe) incremental-type unifier (results in
this presentation)

Tomabechi 1991, 1992
With structure sharing adaptation (Malouf 2000)

• This has been regarded as the state-of-the-art
method for 20 years

• Unification is divided into two passes
1. with no allocations, prepare data structures
2. if successful, write new TFS

• Scratch fields are invalidated by Wroblewski’s
global counter technique

• Disadvantages:
– As published, it is not thread-safe
– Successful unification requires two passes

Other authors
• Godden (1990) “Lazy Unification” relies on

language closures
– Inefficiencies of this language construct probably

nullify gains
• Emele (1991)

– Extending Pererira’s update/environment ideas;
backtracking

• Kogure (1990, 1994)
• Tomuro and Lytinen (1997)
• Van Lohuizen (2000)

– parallel adaptation of Tomabechi

-way unification: idea
• Observation: complexity in existing algorithms owes to the

maintenance of temporary structures to account for pending
equivalence classes that are subject to further spreading

• At each step, a duplex (two-argument) unifier can only join a
single element to the class. Therefore:
– scratch structures reflect the complexity of an arbitrary limitation
– the number of recursive calls is unnecessarily high

duplex unification

1. unify(t1, t2)
F
G

2. unify(t1-F/G, t2-G/H
H

3. unify(#2, t1-H/J)
J

The number of recursive calls in a top-level
unification is in the number of coreference
equivalence classes in the input (3 in this case)

-way unification
• It would preferable to unify the entire

equivalence class at once, in a single function
call

• Delay descent on the class until the
equivalence class is definitive

• Only then, unify all nodes in the class and enter
their sub-structure all at once

• To do this, a set of reentrancy tallies—invariant
for each top-level TFS—is maintained and
referenced during unification

example
2
2

2

1. unify(t1, t2)
F
G
H
J

2. unify(t1-F/G,
t2-G/H,
t1-H/J)

3. completeness-check

The number of recursive calls is ܱ ݊ in the number of equivalence
classes in the output (2 in this case). In unification, the number of
output classes is always ൑ the number of input classes.

4

class tally: (2) 1 0 (2) 1 (3) 2 1 0

-way completeness check
• When the traversal is complete, remaining reentrancies for all

classes must be zero
• If any are not, this indicates that parts of one or more inputs

were not visited
• Unvisited parts occur when there are mutually-blocking

structures:

• This condition is a true-positive for unification failure
• The cost of the check—ܱ ݊ integer tests for zero, in the

number of input classes—is only borne for putative successes

Determinism guarantees
• For inputs that can be unified:

– when any classes remain, at least one of them will be
exposed and completed

– such a class will always be accessible via a prospective
(not yet visited) node

• The completeness check is the key to the single-
traversal guarantee:
– -way unification requires only one single, step-wise

traversal of the input TFSes, greedily descending only
on completed classes

– Traversal order—for discovering the exposed,
completed classes—is irrelevant

Space analysis - satisfiability
• For satisfiability checking, the class list, plus a

single integer tally is the entire scratch
requirement

• Worst-case in the number of input
classes

• Best case in the number of output
classes

• For best performance, the class lists are
directly maintained in the variadic format of
the (eventual) recursive call

Persistent space analysis
• Tally sets are an additional persistent storage cost for each top

level TFS
– ܱ ݊ in the number of coreferenced nodes
– agree uses 1 byte tallies, allowing a single coreference to have up to 255

reentrancies

• Computing these tally sets are a “free” product of the
unification that produces any TFS

• But they require administration: a more generally pervasive
association between nodes and their top-level TFS
– However, carrying this association also solves the problem of spurious

structure sharing (Malouf 2000, aka theorem proving’s “renaming
problem” Pereira 1985)

– Consistently distinguishing nodes by < ,ܵܨܶ ݁݀݋݊ > tuple within the
unifier allows aggressive (extra-linguistic) structure sharing

Implementation options
• Class lists can be discarded after descent is undertaken
• In the minimal requirement, type unification (in addition to

descent) is deferred until the class is definitive
– Depending on storage details, this may incur extra node

accesses
– This increases the number of failures detected solely by

the completeness check
– To detect overall failures earlier, and avoid extra node

accesses, it is trivial to maintain a running type unification
with each class

– For the above reasons, agree implements this variation

Extending the -way satisfiability checker
to the full case of writing the result TFS

• For each class, also maintain a list of referring
nodes

• In the agree implementation, this is a linked list
which adds time and space in the
number of input classes

• When a coreferenced node is definitively
“published,” an walk of the list writes all of
its inward arcs
– This is trivially deferred until unification success is

known

agree: -way full implementation notes

• The agree implementation is vastly complicated by
simultaneously implementing the parse restrictor, so that
restricted nodes are never written in the first place
– Only referring nodes in non-restricted areas are recorded in the

class
– Traversal into restriction is still required, so writing is switched

off when entering restriction—but then back on when popping
out of any coreference that is not subject to restriction

– The re-enabling case is detected by the presence of > 0
referring nodes

• Sharing the invariant tally set amongst rule daughters is ok,
but may lead to reentrancy tallies of ‘1’, which can be
ignored

Unification in DELPH-IN parsers
• The LKB and PET use Tomabechi’s method
• van Lohuizen (2000) made some modifications to

PET to support concurrent unification
– is this version still supported?

• agree is a new parser supporting DELPH-IN
research standards

• agree supports two unifier test configurations
– incremental (duplex) unifier
– new -way unifier (with running type carry)
– both are thread-safe, supporting intrinsic concurrency

when or if the parser initiates multiple tasks

Evaluating -way unification
• When testing diverse parsers, it is not possible to decisively

control for performance of the unification algorithm alone
• Comparative evaluation of distinct parsing systems is already

notoriously difficult (Dridan 2010)
• This is true even with identical grammars and testsuites

Uncontrolled variables include: operating system; programming language;
compiler options; runtime environment; storage and access methods for
GLBs, type hierarchy, and TFS; parser configuration options; and
numerous internal parser implementation details, such as chart storage,
chart access, etc.

• Therefore, conclusive evaluation of ݊-way unification requires
intra-system testing
– An incremental unifier is in place in the agree system (results today)
– An in-system quasi-destructive unifier must be implemented (work

underway)

Evaluation methodology
• ERG rev. 8962
• ‘Hike’ corpus

– except sentences containing numerals (287 sentences)
http://www.agree-grammar.com/corpora/hike/hike-input-PET.txt

• Full packing, exhaustive unpacking
– agree currently does not support parse selection

• Windows Server 2008 x64
• .NET 4.0
• gcServer

– this is a more intrusive, but higher-performance garbage collector

• Hardware: 8-way (2 × Xeon 5460), 3.17GHz, 32GB

incremental duplex vs. -way unification,
agree parser: multi-threaded, pipeline 2 vs. single-threaded pipeline 8

-way: Opportunities in the parser

Although experiments evaluating the intrinsic
performance of -way unification continue, the
algorithm does enable at least two intriguing
operational benefits:

1. Simplified treatment, during unification, of well-
formedness constraints

2. Synchronous unification of all rule-daughters
during unpacking

Well-formed unification
Our formalism enforces
well-formedness during
unification. Because the
type unification of t1 and
t2 yields a third type, t3,
unification must
automatically introduce
the canonical constraint on
t3 as well. Therefore, t3
ends up with g for feature
F, even though this
constraint is specified by
neither t1 nor t2.

Evaluating well-formedness checks
with -way unification

• With the ERG ‘Hike’ corpus, well-formedness checks
account for 1.41% of duplex unification time
– This was measured using the agree incremental unifier but

the result should apply in general
• When -way naturally incorporates well-formed

constraints, their provenance is lost
– This is the aesthetic benefit of the method…
– …but it essentially precludes direct measurement of the

improvement
– However, any improvement would likely be small
– Therefore, evaluation of this effect was not pursued

-way and Unpacking
• -way satisfaction checking trivially supports parse

forest validating with top-level unification
operation per derivation
– In practice, memoization at each level of the tree

is desired, so operations would be used per
derivation

• Duplex unifiers require in the rule arity for each
node in the derivation tree
– Memoization is not opt-out, so, ଶ operations

per derivation

Evaluating -way synchronous unpacking

• Test -way unification with and without
synchronous unpacking, in the agree parser

• Synchronous unpacking was 13% faster over
the whole corpus

• As expected, maximum improvement was for
longer sentences, as high as 94%

Results: synchronous unpacking
agree parser, ݊-way unification, multi-threaded, pipeline 2

Future work
• Intra-system evaluation of -way vs. quasi-

destructive unification
– implement Tomabechi (1991, 1992) method in

agree
• Exploit aggressive structure sharing potential

in -way unification

Thank you!

agree parser – overview and eval
presented at breakout tomorrow

References
Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, Roger Nasr. 1989. Efficient

Implementation of Lattice Operations
Ulrich Callmeier. 2001. Efficient Parsing with Large-Scale Unification

Grammars. MA Thesis, Universität des Saarlandes - Fachrichtung
Informatik.

Ulrich Callmeier. 2000. PET: a platform for experimentation with efficient
HPSG processing techniques. Natural Language Engineering 6(1): 99-107.

Rebecca Dridan. 2010. Using Lexical statistics to improve HPSG Parsing. PhD
Thesis, Universität des Saarlandes.

M. Emele. (1991) “Unification with lazy non-redundant copying.” In
Proceedings of the 29th Annual Meeting of the Association for
Computational Linguistics, Berkeley, CA, 323–330.

Dan Flickinger (2000). English Resource Grammar. In
Flickinger, Oepen, Tsujii, Uszkoreit, eds.

References
Godden, K. (1990) “Lazy unification.” In Proceedings of the 28th Annual

Meeting of the Association for Computational Linguistics, Pittsburgh, PA,
180–187.

Kogure, K. (1990) “Strategic lazy incremental copy graph unification.” In
Proceedings of the 13th Conference on Computational Linguistics
(COLING), Helsinki, Finland, 223–228.

Fernando C. N. Pereira. 1985. A structure-sharing representation for
unification-based grammar formalisms. In Proc. of the 23rd Annual
Meeting of the Association for Computational Linguistics. Chicago, IL, 8-
12 July 1985, pages 137-144.

Hideto Tomabechi. 1991. Quasi-destructive graph unification. In Proc. of the
29th Annual Meeting of the Association for Computational Linguistics,
Berkeley, CA.

References
Hideto Tomabechi. 1992. Quasi-destructive graph unifications with

structure-sharing. In Proc. of the 15th International Conference on
Computational Linguistics (COLING-92), Nantes, France.

Hideto Tomabechi. 1995. Design of efficient unification for natural language.
Journal of Natural Language Processing, 2(2):23-58.

Marcel P. van Lohuizen. 2000. Memory-efficient and Thread-safe Quasi-
Destructive Graph Unification. Proc. of the 38th Meeting of the
Association for Computational Linguistics.

David A. Wroblewski. 1987. Nondestructive graph unification. In Proc. of the
6th National Conference on Artificial Intelligence (AAAI-87), 582-589.
Morgan Kaufmann.

