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Summary
• Unification is by far the most expensive part of parsing
• PET and LKB implement Tomabechi’s (1991, 1992) “quasi-

destructive” method
• I investigate a new algorithm where the fundamental 

recursive function accepts node arguments in variable arity
• The method is implemented in agree, a new DELPH-IN parser
• Early results are promising, especially during unpacking, 

where all rule daughter positions can be unified at once
• ݊-way unification outperforms a Wroblewski (1987)-style 

incremental unifier in controlled intra-system evaluation
• Unification satisfiability checker pseudo-code:

http://www.agree-grammar.com/n-way-unification/satisfiability.html



What makes TFS unification difficult?

• Coreference spreading: The unification of t1 and t2
equates two coreference equivalence classes which 
remain distinct within t1

• This process can continue to chains of arbitrary 
length



Pereira 1985
“A Structure-sharing representation for unification-based grammar formalisms”

• Basic unification algorithm (from theorem 
proving work in the early 1970s) remains 
unchanged

• Instead, the underlying graph representation is 
changed to reduce the amount of new structure 
written

• This is done by maintaining each TFS as an 
tuple

• Applying updates incurs penalties when the 
derived instance is accessed



Wroblewski 1987
“Nondestructive Graph Unification”

• “Incremental” unification
• Build new structure as needed to avoid 

destroying old
• Generation counter invalidates all temporary 

structures associated with failed work in a single 
operation

• Incremental algorithms inherently suffer from 
“over-copying”

☞ For comparison with -way, agree includes a 
(thread-safe) incremental-type unifier (results in 
this presentation)



Tomabechi 1991, 1992
With structure sharing adaptation (Malouf 2000)

• This has been regarded as the state-of-the-art 
method for 20 years

• Unification is divided into two passes
1. with no allocations, prepare data structures
2. if successful, write new TFS

• Scratch fields are invalidated by Wroblewski’s
global counter technique

• Disadvantages:
– As published, it is not thread-safe
– Successful unification requires two passes



Other authors
• Godden (1990) “Lazy Unification” relies on 

language closures
– Inefficiencies of this language construct probably 

nullify gains
• Emele (1991)

– Extending Pererira’s update/environment ideas; 
backtracking

• Kogure (1990, 1994)
• Tomuro and Lytinen (1997)
• Van Lohuizen (2000)

– parallel adaptation of Tomabechi



-way unification: idea
• Observation: complexity in existing algorithms owes to the 

maintenance of temporary structures to account for pending 
equivalence classes that are subject to further spreading

• At each step, a duplex (two-argument) unifier can only join a 
single element to the class. Therefore:
– scratch structures reflect  the complexity of an arbitrary limitation
– the number of recursive calls is unnecessarily high



duplex unification

1. unify(t1, t2)
F
G

2. unify(t1-F/G, t2-G/H
H

3. unify(#2, t1-H/J)
J

The number of recursive calls in a top-level 
unification is in the number of coreference
equivalence classes in the input (3 in this case)



-way unification
• It would preferable to unify the entire 

equivalence class at once, in a single function 
call

• Delay descent on the class until the 
equivalence class is definitive

• Only then, unify all nodes in the class and enter 
their sub-structure all at once

• To do this, a set of reentrancy tallies—invariant 
for each top-level TFS—is maintained and 
referenced during unification



example
2
2

2

1. unify(t1, t2)
F
G
H
J

2. unify(t1-F/G,
t2-G/H,
t1-H/J)

3. completeness-check

The number of recursive calls is ܱ ݊ in the number of equivalence 
classes in the output (2 in this case). In unification, the number of 
output classes is always ൑ the number of input classes.

4

class tally: (2) 1 0 (2) 1 (3) 2 1 0



-way completeness check
• When the traversal is complete, remaining reentrancies for all 

classes must be zero
• If any are not, this indicates that parts of one or more inputs 

were not visited
• Unvisited parts occur when there are mutually-blocking 

structures:

• This condition is a true-positive for unification failure
• The cost of the check—ܱ ݊ integer tests for zero, in the 

number of input classes—is only borne for putative successes



Determinism guarantees
• For inputs that can be unified:

– when any classes remain, at least one of them will be 
exposed and completed

– such a class will always be accessible via a prospective 
(not yet visited) node

• The completeness check is the key to the single-
traversal guarantee:
– -way unification requires only one single, step-wise 

traversal of the input TFSes, greedily descending only 
on completed classes

– Traversal order—for discovering the exposed, 
completed classes—is irrelevant



Space analysis - satisfiability
• For satisfiability checking, the class list, plus a 

single integer tally is the entire scratch 
requirement

• Worst-case in the number of input 
classes

• Best case in the number of output 
classes

• For best performance, the class lists are 
directly maintained in the variadic format of 
the (eventual) recursive call



Persistent space analysis
• Tally sets are an additional persistent storage cost for each top 

level TFS
– ܱ ݊ in the number of coreferenced nodes
– agree uses 1 byte tallies, allowing a single coreference to have up to 255 

reentrancies

• Computing these tally sets are a “free” product of the 
unification that produces any TFS

• But they require administration: a more generally pervasive 
association between nodes and their top-level TFS
– However, carrying this association also solves the problem of spurious 

structure sharing (Malouf 2000, aka theorem proving’s “renaming 
problem” Pereira 1985)

– Consistently distinguishing nodes by < ,ܵܨܶ ݁݀݋݊ > tuple within the 
unifier allows aggressive (extra-linguistic) structure sharing



Implementation options
• Class lists can be discarded after descent is undertaken
• In the minimal requirement, type unification (in addition to 

descent) is deferred until the class is definitive
– Depending on storage details, this may incur extra node 

accesses
– This increases the number of failures detected solely by 

the completeness check
– To detect overall failures earlier, and avoid extra node 

accesses, it is trivial to maintain a running type unification 
with each class

– For the above reasons, agree implements this variation



Extending the -way satisfiability checker
to the full case of writing the result TFS

• For each class, also maintain a list of referring 
nodes

• In the agree implementation, this is a linked list 
which adds time and space in the 
number of input classes

• When a coreferenced node is definitively 
“published,” an walk of the list writes all of 
its inward arcs
– This is trivially deferred until unification success is 

known



agree: -way full implementation notes

• The agree implementation is vastly complicated by 
simultaneously implementing the parse restrictor, so that 
restricted nodes are never written in the first place
– Only referring nodes in non-restricted areas are recorded in the 

class
– Traversal into restriction is still required, so writing is switched 

off when entering restriction—but then back on when popping 
out of any coreference that is not subject to restriction

– The re-enabling case is detected by the presence of > 0
referring nodes

• Sharing the invariant tally set amongst rule daughters is ok, 
but may lead to reentrancy tallies of ‘1’, which can be 
ignored



Unification in DELPH-IN parsers
• The LKB and PET use Tomabechi’s method
• van Lohuizen (2000) made some modifications to 

PET to support concurrent unification
– is this version still supported?

• agree is a new parser supporting DELPH-IN 
research standards

• agree supports two unifier test configurations
– incremental (duplex) unifier
– new -way unifier (with running type carry)
– both are thread-safe, supporting intrinsic concurrency 

when or if the parser initiates multiple tasks



Evaluating -way unification
• When testing diverse parsers, it is not possible to decisively 

control for performance of the unification algorithm alone
• Comparative evaluation of distinct parsing systems is already 

notoriously difficult (Dridan 2010)
• This is true even with identical grammars and testsuites

Uncontrolled variables include: operating system; programming language; 
compiler options; runtime environment; storage and access methods for 
GLBs, type hierarchy, and TFS; parser configuration options; and 
numerous internal parser implementation details, such as chart storage, 
chart access, etc.

• Therefore, conclusive evaluation of ݊-way unification requires 
intra-system testing
– An incremental unifier is in place in the agree system (results today)
– An in-system quasi-destructive unifier must be implemented (work 

underway)



Evaluation methodology
• ERG rev. 8962
• ‘Hike’ corpus

– except sentences containing numerals (287 sentences)
http://www.agree-grammar.com/corpora/hike/hike-input-PET.txt

• Full packing, exhaustive unpacking
– agree currently does not support parse selection

• Windows Server 2008 x64
• .NET 4.0
• gcServer

– this is a more intrusive, but higher-performance garbage collector

• Hardware: 8-way (2 × Xeon 5460), 3.17GHz, 32GB



incremental duplex vs. -way unification, 
agree parser: multi-threaded, pipeline 2 vs. single-threaded pipeline 8



-way: Opportunities in the parser

Although experiments evaluating the intrinsic 
performance of -way unification continue, the 
algorithm does enable at least two intriguing 
operational benefits:

1. Simplified treatment, during unification, of well-
formedness constraints

2. Synchronous unification of all rule-daughters 
during unpacking



Well-formed unification
Our formalism enforces 
well-formedness during 
unification. Because the 
type unification of t1 and 
t2 yields a third type, t3, 
unification must 
automatically introduce 
the canonical constraint on 
t3 as well. Therefore, t3
ends up with g for feature 
F, even though this 
constraint is specified by 
neither t1 nor t2.



Evaluating well-formedness checks
with -way unification

• With the ERG ‘Hike’ corpus, well-formedness checks 
account for 1.41% of duplex unification time
– This was measured using the agree incremental unifier but 

the result should apply in general
• When -way naturally incorporates well-formed 

constraints, their provenance is lost
– This is the aesthetic benefit of the method…
– …but it essentially precludes direct measurement of the 

improvement
– However, any improvement would likely be small
– Therefore, evaluation of this effect was not pursued



-way and Unpacking
• -way satisfaction checking trivially supports parse 

forest validating with top-level unification 
operation per derivation
– In practice, memoization at each level of the tree 

is desired, so operations would be used per 
derivation

• Duplex unifiers require in the rule arity for each 
node in the derivation tree
– Memoization is not opt-out, so, ଶ operations 

per derivation



Evaluating -way synchronous unpacking

• Test -way unification with and without 
synchronous unpacking, in the agree parser

• Synchronous unpacking was 13% faster over 
the whole corpus

• As expected, maximum improvement was for 
longer sentences, as high as 94%



Results: synchronous unpacking
agree parser, ݊-way unification, multi-threaded, pipeline 2



Future work
• Intra-system evaluation of -way vs. quasi-

destructive unification
– implement Tomabechi (1991, 1992) method in 

agree
• Exploit aggressive structure sharing potential 

in -way unification



Thank you!

agree parser – overview and eval
presented at breakout tomorrow
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