JaEn: Large-Scale Rule Acquisition

Petter Haugereid and Francis Bond Division of Linguistics and Multilingual Studies, Nanyang Technological University, Singapore petterha@ntu.edu.sg,bond@ieee.org

> delph-in 2011 Suquamish, 25 June, 2011

Introduction

- We have tried two methods for learning transfer rules for the Japanese-to-English MT system Jaen.
- Partial MRS/Object MRS mismatches
- Learning from
 - Dictionaries
 - Parallel text

Partial MRS/Object MRS mismatches

- Parsed short sentences in the Tanaka corpus and the Japanese Wordnet with Jacy and the ERG. (150,000 sentences)
- Tried to transfer the Japanese MRSs
- Looked at the Partially transferred MRSs and the Object MRSs
- Matched with transfer rule types
- \rightarrow 1,110 rules

Procedure — Sources

- We are using Moses (Koehn et al., 2007) and Anymalign (Lardilleux and Lepage, 2009) to generate phrase tables from a collection of four Japanese English parallel corpora and one bilingual dictionary:
 - Tanaka Corpus (2,930,132 words)
 - the Japanese Wordnet Corpus (3,355,984 words)
 - the Japanese Wikipedia corpus (7,949,605)
 - the Kyoto University Text Corpus with NICT translations (1,976,071 words)
 - Edict, a Japanese English dictionary (3,822,642 words)

Procedure — Preparing the training data

- The corpora were divided into development, test, and training data.
- Transfer rules were extracted from the training data.
- The training data of the four corpora together with the Edict dictionary form a parallel corpus of 20 million words.
 - 9.6 million English words
 - 10.4 million Japanese words
- The traning data were tokenized and lemmatized.
 - For Japenese with the MeCab morphological analyzer.
 - For English with the Freeling analyzer.

Procedure — Extracting phrase tables

- We applied GIZA++/Moses and Anymalign to the lemmatized parallel corpus
- \rightarrow 10,812,423 Moses entries and 5,765,262 Anymalign entries
 - We filtered out
 - Entries with an absolute frequency of 1.
 - Entries which had more than 4 words on the Japanese side or more than 3 words on the English side.
 - Entries with lemmas that were not in the lexicons the parser/generator.
 - Entries with a translation probability, P(English|Japanese), of less than 0.1.
- \rightarrow 2,618,959 entries in total

SMT phrase table entries

Japanese	English	Probability	Source
頭が良い	bright	0.473684	Anymalign
頭が良い	intelligent	0.2	Moses
頭 が 良い	clever	0.2	Moses

Procedure — Extracting possible semantic rules

- Phrase table entry lemmas were matched with semantic predicates assigned by Jacy/ERG lexicons.
- Each possible surface rule was represented with a list of all possible semantic predicate rules.
 - \rightarrow A possible surface rule with three (two times) ambiguous lexical items \rightarrow 2x2x2 = 8 possible semantic rules.
- A total of 46,907,658 possible semantic rules were created.
- Semantic transfer rules containing predicates of probability less than 0.2 were filtered out.
 - \rightarrow 5,584,604 possible semantic rules.

Procedure — Selecting semantic transfer rules

- The possible semantic transfer rules were matched with nine different patterns/templates.
 - \rightarrow 29,417 single rules.
 - \rightarrow 74,847 MWE rules.
 - \rightarrow 104,264 rule in total.
- Once the rule templates have been selected and the thresholds set, the entire process is automatic.

Extracted single rules

Input		Output	Rules
noun	\rightarrow	noun	20,207
proper noun	\rightarrow	proper noun	1,225
adj	\rightarrow	adj	2,751
intrans verb	\rightarrow	intrans verb	3,242
trans verb	\rightarrow	trans verb	1,985
ditrans verb	\rightarrow	ditrans verb	11
Total			29,417

Table: Transfer rule patterns.

Extracted MWE rules

Input		Output	Rules
noun + noun	\rightarrow	noun + noun	27,345
noun + noun	\rightarrow	adj + noun	18,053
noun + noun	\rightarrow	noun	19,033
noun + adj	\rightarrow	adj	473
PP	\rightarrow	adj	856
PP	\rightarrow	PP	146
verb + NP	\rightarrow	verb + NP	6,993
postp + noun + verb	\rightarrow	verb	1,360
PP + verb	\rightarrow	verb	588
Total			74,847

Table: Transfer rule patterns.

$\mathsf{PP} \to \mathsf{adjective}$

- Japanese PPs headed by the postposition O no "of" often correspond to an adjective in English:
- (1) a. 小型 の small.size of small
 - b. 音楽 の music of *musical*

$PP \rightarrow PP$

- Japanese PPs headed by the postposition ~ de
 "with/by/in/on/at" often translates into English PPs headed by the preposition 'by' where the prepositional object does not have a determiner:
- (2) タクシー で taxi DE by taxi

$PP \rightarrow PP$ — Example

$Verb + NP \rightarrow Verb + NP$

- Japanese $noun + object \ marker (\cancel{\epsilon}) + verb \ MWEs$ usually translates into one out of three English MWEs:
- (4) a. テニスを します tennis ACC do POLITE play tennis
 - b. 生計 を 立てる living ACC stand up make a living
 - c. 責め を 負う blame ACC bear take the blame

$\mathsf{Noun} + \mathsf{Adj} \to \mathsf{Adj}$

• The Japanese $noun + h^{\mathfrak{r}}$ (ga) + adjective MWE pattern is translated into an adjective in English:

```
(5) X ga 背 か 高い
X ga se ga takai
X ga NOM height NOM high
X is tall
```

$\mathsf{Noun} + \mathsf{Adj} \to \mathsf{Adj}$

- With the new rules, the transfer grammar now correctly translates (6) as *She is very intelligent*. and not *Her head is very good*.
- The adverb modifying the adjective in Japanese is also modifying the adjective in English.
- (6) 彼女 は 大変 頭 が いい。 kanojo wa taihen atama ga yoi . She TOPIC very head NOM good . She is very intelligent.

Passive (and zero pronouns)

この 部屋 は 台所 として 使わ れ て いる。

Old: You are using this room as the kitchen.

New: This room is used as a kitchen.

Ref: (This room is used as a kitchen.)

彼女 の 名前 は 知ら れ て い ません でした。

Old: I was not knowing her name.

New: Her name was not known.

Ref: (Her name was not known.)

NEVA: 18.48% → 18.83%

Models for transfer and generation

- A trigram model for transfer ranking
- Generation model + 1.4% NEVA

Results

Version	Total coverage	NEVA	F1
2010	18.0%	,	16.3%
2011	27.6%		22.5%

Table: Coverage on development data.

Results

- The coverage of the system is 27.6%.
- A human evaluation of the translated test sentences from the last test shows that Jaen performs better than Moses in 53 out of 100 cases.
- The BLEU score of Jaen (24.90) is still below that of Moses (33.63).

Discussion — Compositional rules

- Many of the translations learned are compositional.
- 穴を掘る *ana-wo horu* "dig hole" → *dig a whole* would have been translated using existing rules.
- The advantage of the MWE rule is that it reduces the search space
- → The system does not have to consider less likely translations such as carve the shortages.

Discussion — Non-compositional rules

- Many of the rules find non-compositional translations, or those where the structure cannot be translated word for word.
- Some of these are also idiomatic in the source and target language.
- One of our long term goals is to move these expressions into the source and target grammars.

Future work — Selecting the good rules

- How do we determine whether rules are good or not.
- Currently we are investigating two solutions:
 - feedback cleaning, where we investigate the impact of each new rule and discard those that degrade translation quality.
 - human-in-the loop: presenting each rule and a series of relevant translation pairs to a human and asking them to judge if it is good or not.

Future work — Qualitative improvement

- We are working in parallel to qualitatively improve the MWE rules in two ways.
 - By extending rules using semantic classes, not just words.
 - ightarrow need for fewer rules, but each rule would be more powerful.
 - By learning complex rules directly from the parallel text
 - This will be necessary to catch rules that our templates do not include

Cooperation with Kyung Hee University

- We are participating in Jong-Bok Kim's new project.
- Employ this mechanism for Korean-English and Korean Japanese.
- We would like to share the translation rule types and the translation rule learning infrastructure also to other translation projects.

References

Koehn, P., Shen, W., Federico, M., Bertoldi, N., Callison-Burch, C., Cowan, B., Dyer, C., Hoang, H., Bojar, O., Zens, R., Constantin, A., Herbst, E., Moran, C., and Birch, A. (2007). Moses: Open source toolkit for statistical machine translation. In *Proceedings of the ACL 2007 Interactive Presentation Sessions*, Prague.

Lardilleux, A. and Lepage, Y. (2009). Sampling-based multilingual alignment. In *Proceedings of Recent Advances in Natural Language Processing (RANLP 2009)*, pages 214–218, Borovets, Bulgaria.