

Combining Deep and Shallow Approaches to Speculation Analysis

Erik Velldal Lilja Øvrelid Jonathon Read[†] Stephan Oepen

†jread@ifi.uio.no

Date: 21 April 2011

Venue:

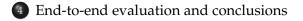
e: The Dialogue Systems Group Department of Chinese, Translation & Linguistics City University of Hong Kong

Introduction

- Speculation Analysis = identifying uncertainty in text
- ► Increased interest from the NLP community recently:
 - ► The BioNLP 2009 Shared Task
 - ► The CoNLL 2010 Shared Task
 - ► The NeSp-NLP 2010 Workshop
 - A forthcoming special issue of Computational Linguistics

BioScope Corpus

Biomedical texts with manual annotation of speculation **cues** (<>) and their corresponding **scope** ({}) (Vincze et al., 2008).


- 1. Second, {the interaction between roX RNA and MOF protein <appears> to lack specificity}.
- 2. These data {<indicate that> IL-10 and IL-4 inhibit cytokine production by different mechanisms}.
- 3. {The unknown amino acid <may> be used by these species}.

Outline

- Data sets and evaluation measures
- 2 Identifying speculation cues
- 3 Resolving the scope of speculation
 - A rule-based approach using dependency structures
 - A data-driven approach using constituent structures
 - A hybrid approach

Outline

Data sets and evaluation measures

2 Identifying speculation cues

- Resolving the scope of speculation
 A rule-based approach using dependency structures
 A data-driven approach using constituent structures
 A hybrid approach
- 4 End-to-end evaluation and conclusions

The BioScope Data; Annotated for Speculation

		Speculation		
	Sentences	Sentences	Cues	MW Cues
BSA	11871	2101	2659	364
BSP	2670	519	668	84
BS	14541	2620	3327	448
BSE	5003	790	1033	87

Preprocessing

- BioScope XML converted to stand-off **characterisation**.
- Tokenisation performed using the GENIA tagger (Tsuruoka et al. 2005), supplemented with a cascaded finite-state tokeniser.
- Part-of-speech tags from both the GENIA tagger, for higher accuracy in the biomedical domain, and TnT (Brants 2000), in order to utilise the improved tokenisation.
- Dependency parsing using MaltParser (Nivre et al. 2006) stacked with the XLE platform (Crouch et al. 2008) with the English grammar developed by Butt et al. (2002).
- ► Constituent parsing with the HPSG-based *English Resource Grammar* (Flickinger 2002).

Evaluation was performed using the scoring software of the CoNLL 2010 Shared Task, with ten fold cross-validation.

$$\mathbf{Prec} = \frac{\mathrm{tp}}{\mathrm{tp+fp}} \quad \mathbf{Rec} = \frac{\mathrm{tp}}{\mathrm{tp+fn}} \quad \mathbf{F1} = \frac{2 \times \mathrm{Prec} \times \mathrm{Rec}}{\mathrm{Prec} + \mathrm{Rec}}$$

A true positive requires identification of **all words** in the cue/scope.

Outline

Data sets and evaluation measures

2 Identifying speculation cues

Resolving the scope of speculation
A rule-based approach using dependency structures
A data-driven approach using constituent structures
A hybrid approach

4 End-to-end evaluation and conclusions

Farkas et al. (2010) note four types of speculation cues:

adjectives or adverbsprobable, likely, possible, unsureauxiliariesmay, might, couldconjunctionseither ... orverbssuggest, suspect, indicate, suppose

More than 85% of the cues observed in the BioScope corpus also occur as non-cues. For example:

- 1. In 5 patients the granulocytes {<appeared> polyclonal} [...]
- 2. The effect appeared within 30 min [...]

Farkas et al. (2010) note four types of speculation cues:

adjectives or adverbsprobable, likely, possible, unsureauxiliariesmay, might, couldconjunctionseither ... orverbssuggest, suspect, indicate, suppose

More than 85% of the cues observed in the BioScope corpus also occur as non-cues. For example:

- 1. In 5 patients the granulocytes {<appeared> polyclonal} [...]
- 2. The effect appeared within 30 min [...]

- using only surface unigrams (Baseline);
- using lemma trigrams left/right of, and bigrams to the right of the candidate word (*n*-grams); and
- disregarding candidate words that do not appear as cues in the training data (Filtering).

- using only surface unigrams (Baseline);
- using lemma trigrams left/right of, and bigrams to the right of the candidate word (*n*-grams); and
- disregarding candidate words that do not appear as cues in the training data (Filtering).

- using only surface unigrams (Baseline);
- using lemma trigrams left/right of, and bigrams to the right of the candidate word (*n*-grams); and
- disregarding candidate words that do not appear as cues in the training data (Filtering).

- using only surface unigrams (Baseline);
- using lemma trigrams left/right of, and bigrams to the right of the candidate word (*n*-grams); and
- disregarding candidate words that do not appear as cues in the training data (Filtering).

Configuration Statistics for the Speculation Cue Classifiers

Model	# Examples	% Positives	# Features	# SVs
Baseline	340,000	1%	20,000	20,000
<i>n-</i> grams	340,000	1%	2,600,000	14,000
Filtering	10,000	30%	100,000	5,000

Identifying Speculation Cues

Model	Prec	Rec	F1
Baseline	90.49	81.16	85.57
<i>n</i> -grams	94.65	82.26	88.02
Filtering	94.13	84.60	89.11

Configuration Statistics for the Speculation Cue Classifiers

Model	# Examples	% Positives	# Features	# SVs
Baseline	340,000	1%	20,000	20,000
<i>n</i> -grams	340,000	1%	2,600,000	14,000
Filtering	10,000	30%	100,000	5,000

Identifying Speculation Cues

Model	Prec	Rec	F1
Baseline	90.49	81.16	85.57
<i>n</i> -grams	94.65	82.26	88.02
Filtering	94.13	84.60	89.11

Error analysis

- False negative errors are most frequent (74%); of these, most are instances of high-frequency, high-ambiguity words:
 - the conjunction **or** (24%),
 - ► the modal **can** (10%),
 - the modal **could** (7%) and
 - the conjunction **either** (6%).
 - ► etc.
- ► 26% of errors are false positives; of these, 60% may be attributed to inaccurate annotation.

Model	Prec	Rec	F1
Baseline	75.15	72.39	74.70
<i>n</i> -grams	86.33	74.21	79.82
Filtering	84.79	77.17	80.80
Tang et al. 2010	81.70	80.99	81.34

Identifying Speculation Cues

Outline

1 Data sets and evaluation measures

2 Identifying speculation cues

3 Resolving the scope of speculation

- A rule-based approach using dependency structures
- A data-driven approach using constituent structures
- A hybrid approach

4 End-to-end evaluation and conclusions

Outline

1 Data sets and evaluation measures

2 Identifying speculation cues

3 Resolving the scope of speculation

- A rule-based approach using dependency structures
- A data-driven approach using constituent structures
- A hybrid approach

4 End-to-end evaluation and conclusions

- Coordinations scope over their conjuncts;
- Prepositions scope over their arguments with its descendants;
- Attributive adjectives scope over their nominal head and its descendants;
- Predicative adjectives scope over referential subjects and clausal arguments, if present;

- **Coordinations** scope over their conjuncts;
- Prepositions scope over their arguments with its descendants;
- Attributive adjectives scope over their nominal head and its descendants;
- Predicative adjectives scope over referential subjects and clausal arguments, if present;

- **Coordinations** scope over their conjuncts;
- Prepositions scope over their arguments with its descendants;
- Attributive adjectives scope over their nominal head and its descendants;
- Predicative adjectives scope over referential subjects and clausal arguments, if present;

- **Coordinations** scope over their conjuncts;
- Prepositions scope over their arguments with its descendants;
- Attributive adjectives scope over their nominal head and its descendants;
- Predicative adjectives scope over referential subjects and clausal arguments, if present;

- **Coordinations** scope over their conjuncts;
- Prepositions scope over their arguments with its descendants;
- Attributive adjectives scope over their nominal head and its descendants;
- Predicative adjectives scope over referential subjects and clausal arguments, if present;

- Modals inherit subject scope from their lexical verb and scope over their descendants;
- Passive verbs scope over referential subjects and the verbal descendants;
- Raising verbs scope over referential subjects and the verbal descendants; *else*
- the Default scope is applied by labeling from the cue to the final punctuation.

- Modals inherit subject scope from their lexical verb and scope over their descendants;
- Passive verbs scope over referential subjects and the verbal descendants;
- Raising verbs scope over referential subjects and the verbal descendants; *else*
- the Default scope is applied by labeling from the cue to the final punctuation.

- Modals inherit subject scope from their lexical verb and scope over their descendants;
- Passive verbs scope over referential subjects and the verbal descendants;
- Raising verbs scope over referential subjects and the verbal descendants; *else*
- the Default scope is applied by labeling from the cue to the final punctuation.

- Modals inherit subject scope from their lexical verb and scope over their descendants;
- Passive verbs scope over referential subjects and the verbal descendants;
- Raising verbs scope over referential subjects and the verbal descendants; *else*
- the Default scope is applied by labeling from the cue to the final punctuation.

Speculation Scope for Gold Cues

Data	Configuration	F1
BSA	Default Baseline Dependency Rules	69.84 73.67
BSP	Default Baseline Dependency Rules	45.21 72.31
BSE	Default Baseline Dependency Rules	46.95 66.73

When using gold cues in **BSP**, the dependency rules generate errors in 27.7% of cases. Of these, most are:

 either parsing errors leading to incorrect phrase and clause boundaries, for example:

 $[\dots] \ \{ the \ reverse \ complement \ mR \ of \ m \ will \ be \ <\! considered\! > to \ be \ [\dots] \}$

 or, adverbials of condition, reason or contrast attaching to cues in a dependency analysis, but not being included in the scope annotation, for example: *This* [*<might> affect the results*] *if there is a systematic bias* [...]

Other errors arise from inaccurate annotation or inclusion of parenthesised elements such as citations.

When using gold cues in **BSP**, the dependency rules generate errors in 27.7% of cases. Of these, most are:

 either parsing errors leading to incorrect phrase and clause boundaries, for example:

 $[\dots] \ \{ the \ reverse \ complement \ mR \ of \ m \ will \ be \ < considered > \ to \ be \ [\dots] \} \$

 or, adverbials of condition, reason or contrast attaching to cues in a dependency analysis, but not being included in the scope annotation, for example:

This {*<might> affect the results*} *if there is a systematic bias* [...]

Other errors arise from inaccurate annotation or inclusion of parenthesised elements such as citations.

When using gold cues in **BSP**, the dependency rules generate errors in 27.7% of cases. Of these, most are:

 either parsing errors leading to incorrect phrase and clause boundaries, for example:

 $[\dots] \ \{ the \ reverse \ complement \ mR \ of \ m \ will \ be \ < considered > \ to \ be \ [\dots] \} \$

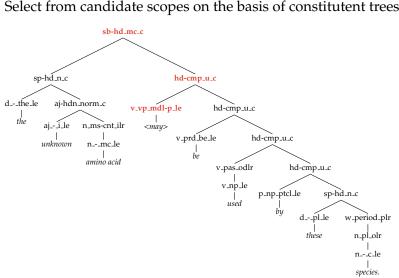
 or, adverbials of condition, reason or contrast attaching to cues in a dependency analysis, but not being included in the scope annotation, for example:

This {<might> affect the results} if there is a systematic bias [...]

Other errors arise from inaccurate annotation or inclusion of parenthesised elements such as citations.

Outline

1 Data sets and evaluation measures


2 Identifying speculation cues

3 Resolving the scope of speculation

- A rule-based approach using dependency structures
- A data-driven approach using constituent structures
- A hybrid approach

4 End-to-end evaluation and conclusions

Data-driven scope resolution

Select from candidate scopes on the basis of constitutent trees.

Candidates are generated by following the path from the cue to the root of the tree, for example:

▶ modal verb : [24, 27] : False

The unknown amino acid {<may>} by used by these species.

- head complement : [24, 52] : False The unknown amino acid {<may> be used by these species}.
- ▶ **subject**-**head** : [0, 52] : True

{The unknown amino acid <may> be used by these species}.

Candidates are generated by following the path from the cue to the root of the tree, for example:

- modal verb : [24, 27] : False The unknown amino acid {<may>} by used by these species.
- head complement : [24, 52] : False The unknown amino acid {<may> be used by these species}.
- ► **subject head** : [0, 52] : **True**

Candidates are generated by following the path from the cue to the root of the tree, for example:

► modal verb : [24, 27] : False

The unknown amino acid $\{<may>\}$ by used by these species.

- head complement : [24, 52] : False The unknown amino acid {<may> be used by these species}.
- ▶ **subject**−**head** : [0, 52] : True

{The unknown amino acid <may> be used by these species}.

Candidates are generated by following the path from the cue to the root of the tree, for example:

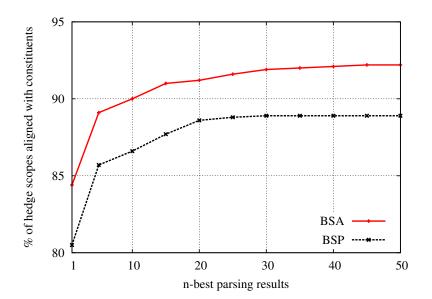
- modal verb : [24, 27] : False The unknown amino acid {<may>} by used by these species.
- head complement : [24, 52] : False The unknown amino acid {<may> be used by these species}.
- ▶ **subject head** : [0, 52] : True

{The unknown amino acid <may> be used by these species}.

Scope boundaries must align with the boundaries of constituents for the approach to be successful.

Alignment can be improved by applying **slackening** rules, including:

- eliminating constituent-final punctuation;
- eliminating constituent-final parenthesised elements;
- reducing scope to the left when the left-most terminal is an adverb and not the cue; and
- ensuring the scope starts with the cue when it is a noun.



Scope boundaries must align with the boundaries of constituents for the approach to be successful.

Alignment can be improved by applying **slackening** rules, including:

- eliminating constituent-final punctuation;
- eliminating constituent-final parenthesised elements;
- reducing scope to the left when the left-most terminal is an adverb and not the cue; and
- ensuring the scope starts with the cue when it is a noun.

Alignment of constituents and scopes

Analysis of the non-aligned items indicated that mismatches arise from:

- ▶ parse ranking errors (40%),
- ▶ non-syntactic scope (25%),
- ► divergent syntactic theories (16%),
- ► parenthesised elements (13%) and
- ► annotation errors (6%)

Alignment when inspecting the first parse in **BSP** is 80.5%. Given an observed parser coverage of 85.6%, the **upper-bound accuracy** of the ranker on **BSP** is around 76%.

Analysis of the non-aligned items indicated that mismatches arise from:

- ▶ parse ranking errors (40%),
- ▶ non-syntactic scope (25%),
- ► divergent syntactic theories (16%),
- ▶ parenthesised elements (13%) and
- ► annotation errors (6%)

Alignment when inspecting the first parse in **BSP** is 80.5%. Given an observed parser coverage of 85.6%, the **upper-bound accuracy** of the ranker on **BSP** is around 76%.

Candidate features

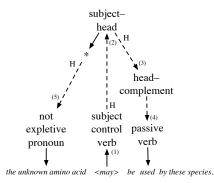
• **Path** features:

- Lexicalised and unlexicalised paths from speculation cues to candidate constituents:
 - specific (e.g. v_vp_mdl-p_le\hd-cmp_u_c\sb-hd_mc_c)
 - general (e.g. v_vp_mdl-p_le\\sb-hd_mc_c)
- Bigrams formed of nodes and their parents
- Surface features:
 - Bigrams formed of preterminal lexical types
 - Cue position within candidate (in tertiles)
 - Candidate size relative to sentence length (in quartiles)
 - Punctuation preceeding the candidate
 - Punctuation at end of the candidate
- **Linguistic** features:
 - Passivisation
 - Subject control verbs occuring with passivised verbs
 - Subject raising verbs
 - Predicative adjectives

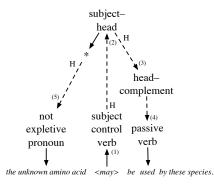
Candidate features

- **Path** features:
 - Lexicalised and unlexicalised paths from speculation cues to candidate constituents:
 - specific (e.g. v_vp_mdl-p_le\hd-cmp_u_c\sb-hd_mc_c)
 - general (e.g. v_vp_mdl-p_le\\sb-hd_mc_c)
 - Bigrams formed of nodes and their parents
- Surface features:
 - Bigrams formed of preterminal lexical types
 - Cue position within candidate (in tertiles)
 - Candidate size relative to sentence length (in quartiles)
 - Punctuation preceeding the candidate
 - Punctuation at end of the candidate
- Linguistic features:
 - Passivisation
 - Subject control verbs occuring with passivised verbs
 - Subject raising verbs
 - Predicative adjectives

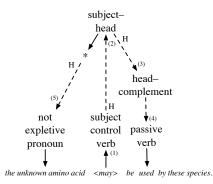
Candidate features



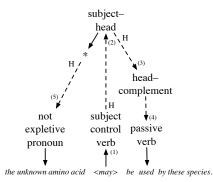
- **Path** features:
 - Lexicalised and unlexicalised paths from speculation cues to candidate constituents:
 - specific (e.g. v_vp_mdl-p_le\hd-cmp_u_c\sb-hd_mc_c)
 - general (e.g. v_vp_mdl-p_le\\sb-hd_mc_c)
 - Bigrams formed of nodes and their parents
- Surface features:
 - Bigrams formed of preterminal lexical types
 - Cue position within candidate (in tertiles)
 - Candidate size relative to sentence length (in quartiles)
 - Punctuation preceeding the candidate
 - Punctuation at end of the candidate
- Linguistic features:
 - Passivisation
 - Subject control verbs occuring with passivised verbs
 - Subject raising verbs
 - Predicative adjectives


1. Cue is a subject control verb.

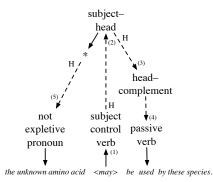
- 2. Find the first subject head parent of (1) on the head path.
- Find the first head – complement child of (2) on the head path.
- 4. The right-most daughter of (3) or one of its descendents is a passivized verb.
- 5. The transitive head daughter of the left-most daughter of (2) is not an expletive *it* or *there*.



- 1. Cue is a subject control verb.
- 2. Find the first subject head parent of (1) on the head path.
- Find the first head – complement child of (2) on the head path.
- 4. The right-most daughter of (3) or one of its descendents is a passivized verb.
- 5. The transitive head daughter of the left-most daughter of (2) is not an expletive *it* or *there*.



- 1. Cue is a subject control verb.
- 2. Find the first subject head parent of (1) on the head path.
- Find the first head – complement child of (2) on the head path.
- 4. The right-most daughter of (3) or one of its descendents is a passivized verb.
- 5. The transitive head daughter of the left-most daughter of (2) is not an expletive *it* or *there*.



- 1. Cue is a subject control verb.
- 2. Find the first subject head parent of (1) on the head path.
- Find the first head – complement child of (2) on the head path.
- 4. The right-most daughter of (3) or one of its descendents is a passivized verb.
- 5. The transitive head daughter of the left-most daughter of (2) is not an expletive *it* or *there*.

- 1. Cue is a subject control verb.
- 2. Find the first subject head parent of (1) on the head path.
- Find the first head – complement child of (2) on the head path.
- 4. The right-most daughter of (3) or one of its descendents is a passivized verb.
- 5. The transitive head daughter of the left-most daughter of (2) is not an expletive *it* or *there*.

Ranker Optimization on BSP

Features	Aligned	Parsed
Baseline	26.76	22.39
Path	78.10	65.80
Path+Surface	79.93	67.25
Path+Linguistic	83.72	70.47
Path+Surface+Linguistic	85.30	71.63

Training with the first aligned constituent in *n*-best parses and testing with *m*-best parses did not greatly impact performance, but optimal values are: n = 1 and m = 3.

Ranker Optimization on BSP

Features	Aligned	Parsed
Baseline	26.76	22.39
Path	78.10	65.80
Path+Surface	79.93	67.25
Path+Linguistic	83.72	70.47
Path+Surface+Linguistic	85.30	71.63

Training with the first aligned constituent in *n*-best parses and testing with *m*-best parses did not greatly impact performance, but optimal values are: n = 1 and m = 3.

Evaluating the ranker

Speculation Scope for Gold Cues

Data	Configuration	F1
BSA	Default Dependency Rules Constituent Ranker	69.84 73.67 75.56
BSP	Default Dependency Rules Constituent Ranker	45.21 72.31 66.32
BSE	Default Dependency Rules Constituent Ranker	46.95 66.73 59.15

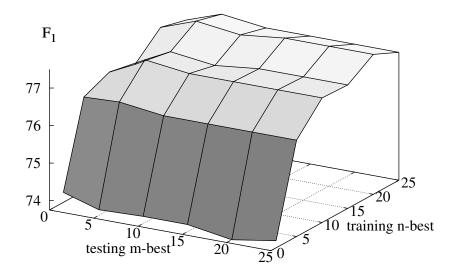
Outline

1 Data sets and evaluation measures

2 Identifying speculation cues

8 Resolving the scope of speculation

- A rule-based approach using dependency structures
- A data-driven approach using constituent structures
- A hybrid approach


4 End-to-end evaluation and conclusions

- Combining the rules with the ranker is possible if an ERG parse is available
- In these cases we introduce a dependency-rules prediction feature, attached to the standard path features
- ► In other cases we stick with the rules' prediction

n-best optimisation

Speculation Scope for Gold Cues

Data	Configuration	F1
BSA	Dependency Rules Constituent Ranker Combined	73.67 75.56 79.17
BSP	Dependency Rules Constituent Ranker Combined	72.31 66.32 74.55
BSE	Dependency Rules Constituent Ranker Combined	66.73 59.15 69.31

Outline

1 Data sets and evaluation measures

2 Identifying speculation cues

3 Resolving the scope of speculation • A rule-based approach using dependency structures • A data-driven approach using constituent structures • A hybrid approach

4 End-to-end evaluation and conclusions

Scope Resolution on Predicted Cues

Data Set	Configuration	Prec	Rec	F1
BSA	Rules Ranker Combined	72.47 74.23 77.60	66.42 68.03 71.12	71.00
BSP	Rules Ranker Combined	69.87 62.96 71.38	62.13 55.99 63.47	65.77 59.27 67.20

Final End-to-End Results on BSE

	Sc	Scope Level		
System	Prec	Rec	F1	
Our approach Morante et al. 2010	•	56.53 55.18		

- Speculation can be identified by making a closed-class assumption, and using a linear SVM classifier to disambiguate known speculation cues;
- Linguistically-motivated heuristics over automatically-parsed dependency structures are effective in determining the scope of speculations;
- It is possible to learn a discriminative ranking function for choosing subtrees from HPSG-based constituent structures that match speculation scopes; and
- Combining the rule-based and ranker-based approaches achieves the best results to date on the CoNLL 2010 Shared Task evaluation data.

- Speculation can be identified by making a closed-class assumption, and using a linear SVM classifier to disambiguate known speculation cues;
- Linguistically-motivated heuristics over automatically-parsed dependency structures are effective in determining the scope of speculations;
- It is possible to learn a discriminative ranking function for choosing subtrees from HPSG-based constituent structures that match speculation scopes; and
- Combining the rule-based and ranker-based approaches achieves the best results to date on the CoNLL 2010 Shared Task evaluation data.

- Speculation can be identified by making a closed-class assumption, and using a linear SVM classifier to disambiguate known speculation cues;
- Linguistically-motivated heuristics over automatically-parsed dependency structures are effective in determining the scope of speculations;
- It is possible to learn a discriminative ranking function for choosing subtrees from HPSG-based constituent structures that match speculation scopes; and
- Combining the rule-based and ranker-based approaches achieves the best results to date on the CoNLL 2010 Shared Task evaluation data.

- Speculation can be identified by making a closed-class assumption, and using a linear SVM classifier to disambiguate known speculation cues;
- Linguistically-motivated heuristics over automatically-parsed dependency structures are effective in determining the scope of speculations;
- It is possible to learn a discriminative ranking function for choosing subtrees from HPSG-based constituent structures that match speculation scopes; and
- Combining the rule-based and ranker-based approaches achieves the best results to date on the CoNLL 2010 Shared Task evaluation data.

Key references

Farkas, R. V. Vincze, G. Móra, J. Csirik and G. Szarvas. 2010. The CoNLL 2010 Shared Task: Learning to detect hedges and their scope in natural language text. In *Proceedings of the 14th Conference on Natural Language Learning*.

Read, J., E. Velldal, S. Oepen and L. Øvrelid. In preparation. Resolving the scope of speculation and negation with a syntactic constituent ranker.

Velldal, E. 2010. Detecting uncertainty in biomedical literature: A simple disambiguation approach using sparse random indexing. In *Proceedings of the* 4th International Symposium on Semantic Mining in Biomedicine.

Velldal, E., L. Øvrelid and S. Oepen. 2010. Resolving speculation: MaxEnt cue classification and dependency-based scope rules. In *Proceedings of the 14th Conference on Natural Language Learning*.

Vincze, V. G. Szarvas, R. Farkas, G. Móra and J. Csirik. 2008. The BioScope corpus: Annotation for negation, uncertainty and their scope in biomedical texts. *BMC Bioinformatics*, 9(11).

Øvrelid, L., E. Velldal and S. Oepen. 2010. Syntactic scope resolution in uncertainty analysis. In *Proceedings of the 23rd International Conference on Computational Linguistics*.