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Introduction

I Speculation Analysis = identifying uncertainty in text
I Increased interest from the NLP community recently:

I The BioNLP 2009 Shared Task
I The CoNLL 2010 Shared Task
I The NeSp-NLP 2010 Workshop
I A forthcoming special issue of Computational Linguistics



Some examples

BioScope Corpus

Biomedical texts with manual annotation of speculation cues
(<>) and their corresponding scope ({}) (Vincze et al., 2008).

1. Second, {the interaction between roX RNA and MOF
protein <appears> to lack specificity}.

2. These data {<indicate that> IL-10 and IL-4 inhibit cytokine
production by different mechanisms}.

3. {The unknown amino acid <may> be used by these
species}.



Outline

1 Data sets and evaluation measures

2 Identifying speculation cues

3 Resolving the scope of speculation
A rule-based approach using dependency structures
A data-driven approach using constituent structures
A hybrid approach

4 End-to-end evaluation and conclusions
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The BioScope corpus

The BioScope Data; Annotated for Speculation

Speculation

Sentences Sentences Cues MW Cues

BSA 11871 2101 2659 364
BSP 2670 519 668 84
BS 14541 2620 3327 448

BSE 5003 790 1033 87



Preprocessing

I BioScope XML converted to stand-off characterisation.

I Tokenisation performed using the GENIA tagger
(Tsuruoka et al. 2005), supplemented with a cascaded
finite-state tokeniser.

I Part-of-speech tags from both the GENIA tagger, for higher
accuracy in the biomedical domain, and TnT (Brants 2000),
in order to utilise the improved tokenisation.

I Dependency parsing using MaltParser (Nivre et al. 2006)
stacked with the XLE platform (Crouch et al. 2008) with
the English grammar developed by Butt et al. (2002).

I Constituent parsing with the HPSG-based English Resource
Grammar (Flickinger 2002).



Evaluation measures

Evaluation was performed using the scoring software of the
CoNLL 2010 Shared Task, with ten fold cross-validation.

Prec =
tp

tp+fp Rec =
tp

tp+fn F1 = 2×Prec×Rec
Prec+Rec

A true positive requires identification of all words in the
cue/scope.
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Types of speculation cues

Farkas et al. (2010) note four types of speculation cues:

adjectives or adverbs probable, likely, possible, unsure
auxiliaries may, might, could

conjunctions either . . . or
verbs suggest, suspect, indicate, suppose

More than 85% of the cues observed in the BioScope corpus
also occur as non-cues. For example:

1. In 5 patients the granulocytes {<appeared> polyclonal} [. . . ]

2. The effect appeared within 30 min [. . . ]
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Our approach

We employ binary word-by-word (WbW) linear support vector
machine classifiers using the SVMlight toolkit:

I using only surface unigrams (Baseline);

I using lemma trigrams left/right of, and bigrams to the right
of the candidate word (n-grams); and

I disregarding candidate words that do not appear as cues in
the training data (Filtering).
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Development results

Configuration Statistics for the Speculation Cue Classifiers

Model # Examples % Positives # Features # SVs

Baseline 340,000 1% 20,000 20,000
n-grams 340,000 1% 2,600,000 14,000
Filtering 10,000 30% 100,000 5,000

Identifying Speculation Cues

Model Prec Rec F1

Baseline 90.49 81.16 85.57
n-grams 94.65 82.26 88.02
Filtering 94.13 84.60 89.11
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Error analysis

I False negative errors are most frequent (74%); of these,
most are instances of high-frequency, high-ambiguity
words:

I the conjunction or (24%),
I the modal can (10%),
I the modal could (7%) and
I the conjunction either (6%).
I etc.

I 26% of errors are false positives; of these, 60% may be
attributed to inaccurate annotation.



Held-out results

Identifying Speculation Cues

Model Prec Rec F1

Baseline 75.15 72.39 74.70
n-grams 86.33 74.21 79.82
Filtering 84.79 77.17 80.80
Tang et al. 2010 81.70 80.99 81.34
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Scope resolution rules

The scope of a speculation depends on the linguistic properties
of the cue (Vincze et al. 2008).

I Coordinations scope over their conjuncts;

I Prepositions scope over their arguments with its
descendants;

I Attributive adjectives scope over their nominal head and
its descendants;

I Predicative adjectives scope over referential subjects and
clausal arguments, if present;
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Scope resolution rules

I Modals inherit subject scope from their lexical verb and
scope over their descendants;

I Passive verbs scope over referential subjects and the
verbal descendants;

I Raising verbs scope over referential subjects and the
verbal descendants; else

I the Default scope is applied by labeling from the cue to the
final punctuation.



Scope resolution rules

I Modals inherit subject scope from their lexical verb and
scope over their descendants;

I Passive verbs scope over referential subjects and the
verbal descendants;

I Raising verbs scope over referential subjects and the
verbal descendants; else

I the Default scope is applied by labeling from the cue to the
final punctuation.



Scope resolution rules

I Modals inherit subject scope from their lexical verb and
scope over their descendants;

I Passive verbs scope over referential subjects and the
verbal descendants;

I Raising verbs scope over referential subjects and the
verbal descendants; else

I the Default scope is applied by labeling from the cue to the
final punctuation.



Scope resolution rules

I Modals inherit subject scope from their lexical verb and
scope over their descendants;

I Passive verbs scope over referential subjects and the
verbal descendants;

I Raising verbs scope over referential subjects and the
verbal descendants; else

I the Default scope is applied by labeling from the cue to the
final punctuation.



Evaluating the scope resolution rules

Speculation Scope for Gold Cues

Data Configuration F1
B

SA Default Baseline 69.84
Dependency Rules 73.67

B
SP Default Baseline 45.21

Dependency Rules 72.31

B
SE Default Baseline 46.95

Dependency Rules 66.73



Error analysis

When using gold cues in BSP, the dependency rules generate
errors in 27.7% of cases. Of these, most are:
I either parsing errors leading to incorrect phrase and clause

boundaries, for example:
[. . . ] {the reverse complement mR of m will be <considered> to be [. . . ]}

I or, adverbials of condition, reason or contrast attaching to
cues in a dependency analysis, but not being included in
the scope annotation, for example:
This {<might> affect the results} if there is a systematic bias [. . . ]

Other errors arise from inaccurate annotation or inclusion of
parenthesised elements such as citations.
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Data-driven scope resolution

Select from candidate scopes on the basis of constitutent trees.
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Our approach

Learn a ranking function over candidate constituents within a
parse (or parses).

Candidates are generated by following the path from the cue to
the root of the tree, for example:

I modal verb : [24, 27] : False
The unknown amino acid {<may>} by used by these species.

I head – complement : [24, 52] : False
The unknown amino acid {<may> be used by these species}.

I subject – head : [0, 52] : True
{The unknown amino acid <may> be used by these species}.
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Alignment of constituents and scopes

Scope boundaries must align with the boundaries of
constituents for the approach to be successful.

Alignment can be improved by applying slackening rules,
including:
I eliminating constituent-final punctuation;

I eliminating constituent-final parenthesised elements;

I reducing scope to the left when the left-most terminal is an
adverb and not the cue; and

I ensuring the scope starts with the cue when it is a noun.
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Alignment of constituents and scopes
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Alignment of constituents and scopes

Analysis of the non-aligned items indicated that mismatches
arise from:
I parse ranking errors (40%),
I non-syntactic scope (25%),
I divergent syntactic theories (16%),
I parenthesised elements (13%) and
I annotation errors (6%)

Alignment when inspecting the first parse in BSP is 80.5%.
Given an observed parser coverage of 85.6%, the upper-bound
accuracy of the ranker on BSP is around 76%.
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Candidate features

I Path features:
I Lexicalised and unlexicalised paths from speculation cues

to candidate constituents:
I specific (e.g. v vp mdl-p le\hd-cmp u c\sb-hd mc c)
I general (e.g. v vp mdl-p le\\sb-hd mc c)

I Bigrams formed of nodes and their parents
I Surface features:

I Bigrams formed of preterminal lexical types
I Cue position within candidate (in tertiles)
I Candidate size relative to sentence length (in quartiles)
I Punctuation preceeding the candidate
I Punctuation at end of the candidate

I Linguistic features:
I Passivisation
I Subject control verbs occuring with passivised verbs
I Subject raising verbs
I Predicative adjectives
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Detecting control verbs with a passivised verb

1. Cue is a subject control verb.

2. Find the first subject – head
parent of (1) on the head path.

3. Find the first
head – complement child of (2)
on the head path.

4. The right-most daughter of (3)
or one of its descendents is a
passivized verb.

5. The transitive head daughter
of the left-most daughter of (2)
is not an expletive it or there.
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Ranker optimisation

Ranker Optimization on BSP

Features Aligned Parsed

Baseline 26.76 22.39

Path 78.10 65.80
Path+Surface 79.93 67.25
Path+Linguistic 83.72 70.47
Path+Surface+Linguistic 85.30 71.63

Training with the first aligned constituent in n-best parses and
testing with m-best parses did not greatly impact performance,
but optimal values are: n = 1 and m = 3.
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Evaluating the ranker

Speculation Scope for Gold Cues

Data Configuration F1
B

SA
Default 69.84
Dependency Rules 73.67
Constituent Ranker 75.56

B
SP

Default 45.21
Dependency Rules 72.31
Constituent Ranker 66.32

B
SE

Default 46.95
Dependency Rules 66.73
Constituent Ranker 59.15
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Combining the rules with the ranker

I Combining the rules with the ranker is possible if an ERG
parse is available

I In these cases we introduce a dependency-rules prediction
feature, attached to the standard path features

I In other cases we stick with the rules’ prediction
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Evaluating the combined approach

Speculation Scope for Gold Cues

Data Configuration F1
B

SA
Dependency Rules 73.67
Constituent Ranker 75.56
Combined 79.17

B
SP

Dependency Rules 72.31
Constituent Ranker 66.32
Combined 74.55

B
SE

Dependency Rules 66.73
Constituent Ranker 59.15
Combined 69.31
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End-to-end development results

Scope Resolution on Predicted Cues

Data Set Configuration Prec Rec F1

B
SA

Rules 72.47 66.42 69.31
Ranker 74.23 68.03 71.00
Combined 77.60 71.12 74.22

B
SP

Rules 69.87 62.13 65.77
Ranker 62.96 55.99 59.27
Combined 71.38 63.47 67.20



Final evaluation

Final End-to-End Results on BSE

Scope Level

System Prec Rec F1

Our approach 61.47 56.53 58.90
Morante et al. 2010 59.62 55.18 57.32



Conclusions

I Speculation can be identified by making a closed-class
assumption, and using a linear SVM classifier to
disambiguate known speculation cues;

I Linguistically-motivated heuristics over
automatically-parsed dependency structures are effective
in determining the scope of speculations;

I It is possible to learn a discriminative ranking function
for choosing subtrees from HPSG-based constituent
structures that match speculation scopes; and

I Combining the rule-based and ranker-based approaches
achieves the best results to date on the CoNLL 2010 Shared
Task evaluation data.
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