Developing reliability metrics and validation tools for datasets with deep linguistic information

> Sérgio Castro Supervisor: Prof. Dr. António Branco (presentation by João Silva)

Faculty of Sciences, University of Lisbon NLX — Natural Language and Speech Group

DELPH-IN Summit Suquamish, WA June 2011

2 Agreement metric

Sérgio Castro (Univ. Lisbon)

- Corpora with increasingly complex linguistic information
- Automated annotation with manual correction
- Ensuring reliability of annotated corpora
 - Make use of multiple annotators
 - Quantified through inter-annotator agreement (ITA) metrics

 Compare the output of the annotators:
 e.g. exact match, Parseval (too coarse for our purposes)

• Need to account for chance agreement

Agreement with chance correction	
Observed, discounting expected	
• Observed agreement (A_o)	$A_o - A_e$
• Expected agreement (A_e)	$1 - A_e$

Introduction LX-DeepGramBank

Overview

- Double-blind annotation with adjudication
- Analyses by LX-Gram
- Manual disambiguation via semantic discriminants (with LinGO)

Representation of "Todos os computadores têm um disco"

Objectives

- Develop a granular ITA metric
 - Accept/reject and Parseval are too coarse
 - Look at individual disambiguation options
 - Account for chance agreement
- Implement a tool
 - Analyse LinGO logs
 - Produce reports

1 Introduction

The Y-Option Kappa metric (K_Y^s)

Observed The proportion of discriminants on which the annotators agree from the total set of discriminants

$$A_o^s = \frac{agr_s}{|D_s|}$$

Expected Assume random (uniform) choice Agreement Observed, discounting expected

$$K_Y^s = \frac{A_o^s - A_e^s}{1 - A_e^s}$$

- Some discriminants are implicitly marked
 - Marking a discriminant discards at least one parse
 Discriminants belonging to that parse are automatically marked
 - Accepting a parse marks its discriminants
- Several markings may result from a single manual choice
 - The tool must group these discriminants together (a choice and its consequences are still one choice)

- LinGO logs do not store every discriminant
 - No information is stored when there is only one parse
 - Upon rejection, only already marked options are stored (if nothing was marked, nothing is stored)
 - Mismatch between the set of discriminants of each annotator
- LinGO bugs/crashes

In theory, theory and practice are the same. In practice they are not.

The set of sentences is divided into three subsets:

- Sentences accepted by both annotators
- Sentences rejected by at least one annotator
- Sentences without stored information

Adapting the metric

• Sentences accepted by both annotators, Sboth

The "well-behaved" case

- All discriminants are available, proceed as expected
- Calculate the proportion of divergence, *P*_D (to be used in the other cases)

Example: Proportion of divergence, P_D

$ O_s $	$ O_s^{eq} $	$ O_s^{dif} $	P_D^s
12	8	4	0.33
7	6	1	0.14
9	0	9	1.00
10	7	3	0.30
17	12	5	0.29

$$P_D^{S_{both}} = \frac{4+1+9+3+5}{12+7+9+10+17} = 0.40$$

Adapting the metric

\textcircled{O} Sentences rejected by at least one annotator, S_{R1}

The "incomplete information" case

- Divide options into two subsets:
 - *O_{com}* are options common to both annotators
 - O_{uniq} are options only present for one annotator

The O_{com} set is well-behaved. For O_{uniq} use an estimation:

$$\frac{|O_{uniq}| \cdot \left(1 - P_D^{S_{both}}\right)}{|O_{uniq}|}$$

Adapting the metric

 $\boldsymbol{\Theta}$ Sentences without stored information, S_{noop}

The "no information at all" case

• Estimate number of options per sentence

$$O_{avg} = rac{|O_{S_{both}}| + |O_{S_{R1}}|}{|S_{both}| + |S_{R1}|}$$

• Estimate "observed" agreement

$$\frac{O_{\mathsf{avg}} \cdot \left(1 - P_D^{\mathcal{S}_{both}}\right)}{O_{\mathsf{avg}}}$$

Some (approximate) numbers:

- 50,000 sentences
- 15,000 are parsed (30% coverage)
- 12,300 remain (due to LinGO bugs/crashes)

Agreement

• Y-Option Kappa of 0.91 (over the 12, 300 sentences) (traditionally, the acceptable threshold is at 0.80)

Introduction

2 Agreement metric

Y-Option Kappa metric

- Observed, discounting expected
- Granular ITA metric (each semantic discriminant is a choice)
- Tool for LinGO log analysis
 - Handles incomplete information in log files (with estimates from "well-behaved" cases)
 - Handles automatic markings (by grouping a choice and its consequences)
- DeepGramBank is reliable

Thank you.