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Background
®0

Domain Adaptation

New Domains for Parse Selection

o With most grammars, a statistical parse selection model
trained on one domain performs less well over a different
domain.

@ The ERG is different to other grammars — manually
constructed, not induced from a treebank, so the effect may
be less pronounced.

@ But the size of this effect hasn’t been quantified for the ERG
and other DELPH-IN grammars.

@ One reason is that we haven't had enough data — we need
large quantities of high quality treebanks.
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Background
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Domain Adaptation

Adapting to New Domains Effectively

@ We can do experiments training on in-domain, out-of-domain
and mixed domain training data.

@ This give us an idea how robust the grammar is over new
domains.

@ But it is also of practical use to downstream grammar users:

e We have some idea how much accuracy we can expect out of
the box on a new domain

e We have an idea how many sentences we should try and
treebank for a new domain to get reasonable performance

o We may get some idea how to make best use of what limited
in-domain data we have, in terms of combining it with
out-of-domain data.
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Corpora

Corpus Summary

Corpus Statistics

Sentences  Sent. Parses
(train/test) length /sent.
WESCIENCE Wikipedia 6149/1482  18.1  271.9

Corpus Description

LOGON Hiking 6823/1727 14.2 229.9
C&B Linux essay 0/567 216 32338
RosoT1 Dialog 768/535 6.7 97.2
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The performance penalty
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The size of the cross-domain penalty

Evaluating the size of the penalty

@ We would like an idea of how the different training data
performs on different test corpora
@ With the 2 training corpora and 4 test corpora, this gives us 8
combinations to test:
e 2 with purely in-domain training data
e 6 with purely out-of-domain training data
@ Using subsets of the training corpora, we can also create
learning curves
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The performance penalty
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The size of the cross-domain penalty

Learning curves — exact match
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The performance penalty
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The size of the cross-domain penalty

Learning curves — EDM
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Improving cross-domain accuracy
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Using minimal in-domain data

Domain Mixing Experiments

@ How much of an improvement in accuracy can we get by
treebanking some new sentences in the target domain?

@ We use either none or all of the out-of-domain data

@ And combine this with varying quantities of “newly
treebanked” data in the target domain

@ This simulates treebanking new sentences and combining with
existing data

@ We train a maxent model from concatenated training data —
which we call CONCAT.
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Improving cross-domain accuracy
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Using minimal in-domain data

Mixing training corpora: CONCAT — exact match
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Improving cross-domain accuracy

[e]e] J

Using minimal in-domain data
Mixing training corpora: CONCAT — EDM
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Improving cross-domain accuracy
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Comparing methods of combining data

Methods for combining training data

@ We now have an idea how much value we can get out of
treebanking.

@ And also some idea about using as much out-of-domain data
as possible

@ But can we get better "value” from some given small quantity
of treebanked data when combining it with the out-of-domain
data?

@ We may wish to weight the in-domain data more heavily, since
we know it's a good fit
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Improving cross-domain accuracy
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Comparing methods of combining data

Methods for combining training data (cont.)

@ Previously mentioned: CONCAT — simply treat all data as one
monolithic block of training data.

o COMBIN — train a model separately using the data from each
domain and combine using linear interpolation with some
weighting

e DupLIC — duplicate the data from one of the domains an
integral number of times
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Improving cross-domain accuracy
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Comparing methods of combining data

Mixing training corpora: COMBIN: exact match
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Improving cross-domain accuracy
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Comparing methods of combining data

Mixing training corpora: COMBIN: EDM
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Improving cross-domain accuracy
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Comparing methods of combining data

Mixing training corpora: DUPLIC: exact match
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Improving cross-domain accuracy
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Comparing methods of combining data

Mixing training corpora: DupLIC: EDM
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Improving cross-domain accuracy
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Comparing methods of combining data

Findings

@ The ERG does reasonably well with only out-of-domain
training data

@ But unsurprisingly, in-domain data is much more valuable
than out-of-domain.

@ On new domains, the choice of training domain matters —
some corpora may match better than others.

@ EDM scores look good out of the box — this may reflect utility
for downstream applications.

@ Consequently we see smaller relative changes in EDM scores
under different conditions.
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Improving cross-domain accuracy
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Comparing methods of combining data

More findings

@ The relatively modest effort to treebank 750-1500 sentences
has a huge payoff

@ Simply concatenating this with available out-of-domain data
works reasonably

o But by upweighting it, particularly by duplicating the smaller
corpus, we get improvements — often significant
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Tree Blazing
°

Motivation

Reusing existing treebank annotations

@ It sometimes occurs that there is a treebank for a new
domain/language, it's just not in the right formalism

@ Assuming a constituency (PTB-style) treebank, can we use
the trees for domain adaptation? What is the relative gain in
parse selection accuracy? What is the relative impact on
treebanking vs. parse selection?

@ Extend earlier work on POS blazing
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Tree Blazing
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Methodology

Methodology

@ Translate trees to discriminants, and use to:
o (in case of parse selection) partition set of analyses into
“silver” (possible) and incorrect analyses
o (in case of treebanking) reduce the set of discriminants directly

@ Dealing with systematic differences in parsing style:
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Tree Blazing
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Methodology

Methodology (cont.)

@ Perform blazing by:
© ignoring cross-bracketing within “embedded” phrases but
otherwise use trees verbatim [IEP ]
@ binarising trees and reattaching phrases (except parens,
commas, conjunctions) [RP ]
@ Select preferred analysis from “silver” analyses via parse
selection
@ For treebanking, additionally:
o left-bracket NPs in case of doubt
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Tree Blazing
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Experiments

Setup

@ Evaluate over GENIA Treebank, using a new mini-treebank of
~1000 items

o ERG with POS-conditioned unknown word handling via
GENIA tagger (incl. NE handling)

o First parse with WeScience parse selection model, and
selectively unpack top-500 parses

@ Out-of-domain baseline: WeScience parse selection model

@ In-domain baseline: self-trained parse selection model
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Experiments

Parse selection

Tree Blazing
o] Yolelo)

Config Gold Acc EDMna

Added Al / AlO P / R / F
(WeSc only) WeSc 123 /39.2 824 /79.2 /807
Random WeSc 6.1 /20.0 70.7 /70.2 /705
Self-train WeSc 129 /39.2 824 /80.3/81.3*
IEP + S-T  WeSc 129 /39.2 83.5/80.9 / 82.2 *+* i}
RP +S-T  WeSc 13.3/40.1 83.8/81.2/ 82.5 ** iy
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Tree Blazing
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Experiments

Parse selection findings

@ Self-training is a high baseline, but blazing improves over it
(when combined with a self-trained parse selection model)

@ Greater improvements for EDMya

@ Poor results when we treat all silver trees as correct; marginal
results without self-trained parse selection
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Experiments

Treebanking

Tree Blazing
[eleTe] Yo)

Standard Blazed
Annotator A Decisions 6.25 7 3.51 4
Time (sec) 150 144 113 107
Annotator D Dfacisions 6.42 7 4.68 4
Time (sec) 105 101 96 80
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Tree Blazing
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Experiments

Finding

@ Treebankers work faster and agree (somewhat) more reliably
with tree blazing

Andrew MacKinlay, Rebecca Dridan, Dan Flickinger and Tim E  Domain Adaptation for and Tree Blazing



Conclusion
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Conclusion

Wrap-up

@ Moving to a new domain definitely drives down parse selection
accuracy, but small amounts of in-domain data (combined
with out-of-domain data) lead to significant gains

@ Also possible to “recycle” in-domain treebank data in the
form of “tree blazing” for both domain tuning and
treebanking purposes
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