Background	Setup	The performance penalty	Improving cross-domain accuracy	Tree Blazing	Conclusion

Domain Adaptation for and Tree Blazing

Andrew MacKinlay, Rebecca Dridan, Dan Flickinger and Tim Baldwin

June 27, 2011

- With most grammars, a statistical parse selection model trained on one domain performs less well over a different domain.
- The ERG is different to other grammars manually constructed, not induced from a treebank, so the effect may be less pronounced.
- But the size of this effect hasn't been quantified for the ERG and other DELPH-IN grammars.

イロト イポト イヨト イヨト

• One reason is that we haven't had enough data – we need large quantities of high quality treebanks.

Background ⊙●	Setup ○	The performance penalty	Improving cross-domain accuracy	Tree Blazing	Conclusion ○
Domain Adapt	ation				
Adanti	ng to	New Domains	Effectively		

- We can do experiments training on in-domain, out-of-domain and mixed domain training data.
- This give us an idea how robust the grammar is over new domains.
- But it is also of practical use to downstream grammar users:
 - We have some idea how much accuracy we can expect out of the box on a new domain
 - We have an idea how many sentences we should try and treebank for a new domain to get reasonable performance
 - We may get some idea how to make best use of what limited in-domain data we have, in terms of combining it with out-of-domain data.

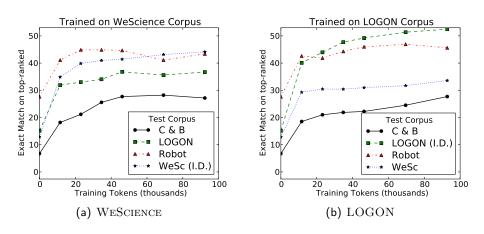
Background	Setup •	The performance penalty	Improving cross-domain accuracy	Tree Blazing	Conclusion O
Corpora					
Corpus	Sum	mary			

Corpus Statistics								
Corpus	Description	Sentences (train/test)	Sent. Iength	Parses /sent.				
WeScience	Wikipedia	6149/1482	18.1	271.9				
LOGON	Hiking	6823/1727	14.2	229.9				
C&B	Linux essay	0/567	21.6	323.8				
Robot1	Dialog	768/535	6.7	97.2				

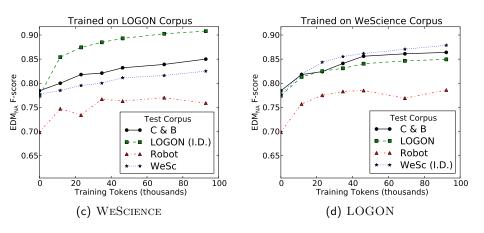
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- We would like an idea of how the different training data performs on different test corpora
- With the 2 training corpora and 4 test corpora, this gives us 8 combinations to test:

- 2 with purely in-domain training data
- 6 with purely out-of-domain training data
- Using subsets of the training corpora, we can also create learning curves



・ロト ・日本 ・モート ・モート



・ロト ・日本 ・モート ・モート

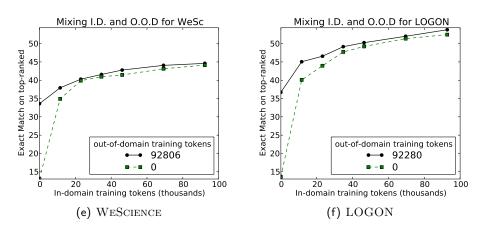
- How much of an improvement in accuracy can we get by treebanking some new sentences in the target domain?
- We use either none or all of the out-of-domain data
- And combine this with varying quantities of "newly treebanked" data in the target domain
- This simulates treebanking new sentences and combining with existing data
- We train a maxent model from concatenated training data which we call CONCAT.

 Background
 Setup
 The performance penalty
 Improving cross-domain accuracy
 Tree Blazing
 Conclusion

 00
 00
 0000000000
 0000000000
 0000000000
 0

 Using minimal in-domain data

Mixing training corpora: CONCAT – exact match



・ 同・ ・ ヨ・

< E

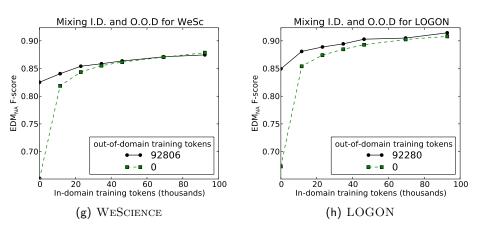
Tree Blazing

- 4 回 2 - 4 回 2 - 4 回 2

Conclusion

Using minimal in-domain data

Mixing training corpora: CONCAT – EDM



Background	Setup ○	The performance penalty	Improving cross-domain accuracy	Tree Blazing	Conclusion ○
Comparing met	hods of co	mbining data			
Method	ds for	combining tra	aining data		

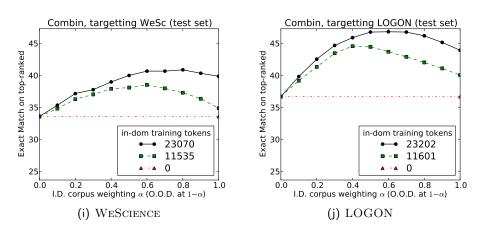
- We now have an idea how much value we can get out of treebanking.
- And also some idea about using as much out-of-domain data as possible
- But can we get better "value" from some given small quantity of treebanked data when combining it with the out-of-domain data?
- We may wish to weight the in-domain data more heavily, since we know it's a good fit

- Previously mentioned: CONCAT simply treat all data as one monolithic block of training data.
- COMBIN train a model separately using the data from each domain and combine using linear interpolation with some weighting

イロト イポト イヨト イヨト

• DUPLIC – duplicate the data from one of the domains an integral number of times

Mixing training corpora: COMBIN: exact match



▲ □ ► < □ ►</p>

3

BackgroundSetupThe performance penalty000000

Improving cross-domain accuracy

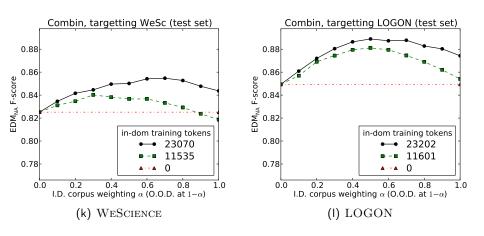
Tree Blazing

- 4 回 2 - 4 回 2 - 4 回 2

Conclusion ○

Comparing methods of combining data

Mixing training corpora: COMBIN: EDM

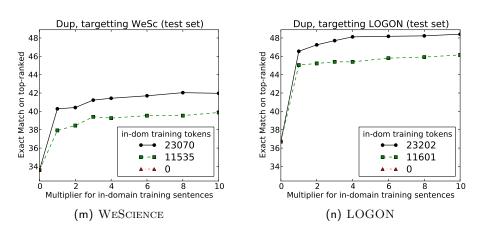


 Background
 Setup
 The performance penalty
 Improving cross-domain accuracy
 Tree Blazing
 Conclusion

 00
 00
 000
 000
 000
 000
 0

 Comparing methods of combining data

Mixing training corpora: DUPLIC: exact match



э

Improving cross-domain accuracy

Tree Blazing

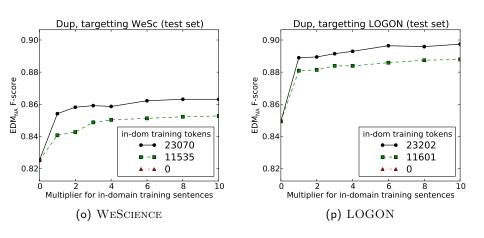
イロン イヨン イヨン イヨン

э

Conclusion ○

Comparing methods of combining data

Mixing training corpora: DUPLIC: EDM



Background	Setup O	The performance penalty	Improving cross-domain accuracy	Tree Blazing	Conclusion ○
Comparing met	hods of co	mbining data			
Finding	s				

- The ERG does reasonably well with only out-of-domain training data
- But unsurprisingly, in-domain data is much more valuable than out-of-domain.
- On new domains, the choice of training domain matters some corpora may match better than others.
- EDM scores look good out of the box this may reflect utility for downstream applications.
- Consequently we see smaller relative changes in EDM scores under different conditions.

Background	Setup ○	The performance penalty	Improving cross-domain accuracy	Tree Blazing	Conclusion ○			
Comparing methods of combining data								
More fi	nding	gs						

- The relatively modest effort to treebank 750-1500 sentences has a huge payoff
- Simply concatenating this with available out-of-domain data works reasonably
- But by upweighting it, particularly by duplicating the smaller corpus, we get improvements often significant

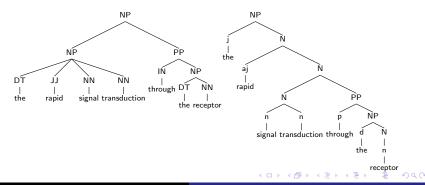
Background	Setup ○	The performance penalty	Improving cross-domain accuracy	Tree Blazing ●○○○○○○	Conclusion O
Motivation					
Reusin	r avic	ting treebank	annotations		

Reusing existing treebank annotations

- It sometimes occurs that there *is* a treebank for a new domain/language, it's just not in the right formalism
- Assuming a constituency (PTB-style) treebank, can we use the trees for domain adaptation? What is the relative gain in parse selection accuracy? What is the relative impact on treebanking vs. parse selection?
- Extend earlier work on POS blazing

Background	Setup ○	The performance penalty	Improving cross-domain accuracy	Tree Blazing ○●○○○○○○	Conclusion O
Methodology					
Metho	dolog	у			

- Translate trees to discriminants, and use to:
 - (in case of parse selection) partition set of analyses into "silver" (possible) and incorrect analyses
 - (in case of treebanking) reduce the set of discriminants directly
- Dealing with systematic differences in parsing style:



Background	Setup O	The performance penalty	Improving cross-domain accuracy	Tree Blazing ○○●○○○○○	Conclusion ○
Methodology					
Metho	dolog	y (cont.)			

- Perform blazing by:
 - ignoring cross-bracketing within "embedded" phrases but otherwise use trees verbatim [IEP]
 - binarising trees and reattaching phrases (except parens, commas, conjunctions) [RP]
- Select preferred analysis from "silver" analyses via parse selection
- For treebanking, additionally:
 - left-bracket NPs in case of doubt

Background	Setup O	The performance penalty	Improving cross-domain accuracy	Tree Blazing ○○○●○○○○	Conclusion O
Experiments					
Setup					

- $\bullet\,$ Evaluate over GENIA Treebank, using a new mini-treebank of ${\sim}1000$ items
- ERG with POS-conditioned unknown word handling via GENIA tagger (incl. NE handling)
- First parse with WeScience parse selection model, and selectively unpack top-500 parses
- Out-of-domain baseline: WeScience parse selection model
- In-domain baseline: self-trained parse selection model

Background	Setup O	The performance penalty	Improving cross-domain accuracy	Tree Blazing ○○○○●○○○	Conclusion O
Experiments					
Parse s	electi	ion			

Config	Gold	Acc	EDM _{NA}
	Added	$A_1 \ / \ A_{10}$	P / R / F
(WeSc only)	WeSc	12.3 / 39.2	82.4 / 79.2 / 80.7
Random	WeSc	6.1 / 20.0	70.7 / 70.2 / 70.5
Self-train	WeSc	12.9 / 39.2	82.4 / 80.3 / 81.3 *
IEP + S-T	WeSc	12.9 / 39.2	83.5 / 80.9 / 82.2 *** ††
RP + S-T	WeSc	13.3 / 40.1	83.8 / 81.2 / 82.5 *** †††

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Background	Setup ○	The performance penalty	Improving cross-domain accuracy	Tree Blazing ○○○○●○○	Conclusion O
Experiments					
Parse s	electi	on findings			

- Self-training is a high baseline, but blazing improves over it (when combined with a self-trained parse selection model)
- $\bullet\,$ Greater improvements for $\mathsf{EDM}_{\rm NA}$
- Poor results when we treat all silver trees as correct; marginal results without self-trained parse selection

Background	Setup O	The performance penalty	Improving cross-domain accuracy	Tree Blazing ○○○○○●○	Conclusion O
Experiments					
Treeba	nking				

		Standard		Bla	Blazed	
Annotator A	Decisions	6.25	7	3.51	4	
Annotator A	Time (sec)	150	144	113	107	
Annotator D	Decisions	6.42	7	4.68	4	
	Time (sec)	105	101	96	80	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Background	Setup O	The performance penalty	Improving cross-domain accuracy	Tree Blazing ○○○○○○●	Conclusion O
Experiments					
Finding					

• Treebankers work faster and agree (somewhat) more reliably with tree blazing

Background	Setup O	The performance penalty	Improving cross-domain accuracy	Tree Blazing	Conclusion ●
Conclusion					
Wrap-ı	ıp				

• Moving to a new domain definitely drives down parse selection accuracy, but small amounts of in-domain data (combined with out-of-domain data) lead to significant gains

通 とう ほうとう ほうど

• Also possible to "recycle" in-domain treebank data in the form of "tree blazing" for both domain tuning and treebanking purposes