## NTU, NTT Site Reports

Francis Bond and Sanae Fujita ${ }^{N T T}$<br>Petter Haugereid, Mathieu Morey, Fan Zhenzhen, Tan Liling<br>Lea Frermann, Dominkus Wetzel

Division of Linguistics and Multilingual Studies
Nanyang Technological University
${ }^{N T T}$ Nippon Telegraph and Telephone Corporation
[bond@ieee.org](mailto:bond@ieee.org)
2012

DELPH-IN

## Overview

## $>$ NTU

$>$ Machine Translation (Jaen, SMT)
> Grammars: Jacy, Norsyg, MCG
$>$ Cross-lingual parse selection and rephrasing
> Wordnets: Japanese, English, Chinese, Malay, Multi
> NTU Multilingual corpus
> Classifiers
> NTT Report (Sanae Fujita \& Takaaki Tanaka)
Release of GoiTaikei - A Japanese Lexicon (NC) almost Joint work with NTU on corpus annotation and WSD

## Jaen

> Japanese-English MT system using LOGON transfer
$>$ core of hand-written rules
$>$ open rules (some quite complex) learned from corpora
$>10$ million word J-E parallel corpus
$>$ learn rules from phrase table based on lemmas * learn from all sentences - high cover
$>$ learn rules from phrase table based on predicates * learn from parsed sentences $(1 / 3)$ - high precision

## Results

|  | Parsing | Transfer | Generation | Overall | NEVA | Oracle | F1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lemm | $79.8 \%$ | $46.6 \%$ | $56.0 \%$ | $20.8 \%$ | 18.65 | 22.99 | 19.69 |
| Pred | $79.8 \%$ | $49.7 \%$ | $52.6 \%$ | $20.8 \%$ | $\mathbf{2 1 . 1 1}$ | $\mathbf{2 5 . 7 5}$ | 20.96 |
| All | $79.8 \%$ | $60.9 \%$ | $54.7 \%$ | $\mathbf{2 6 . 5} \%$ | 19.77 | 24.00 | $\mathbf{2 2 . 6 6}$ |

Table 1: Evaluation of the Tanaka Corpus Test Data

|  | BLEU | METEOR | HUMAN |
| :--- | ---: | ---: | ---: |
| JaEn (All) | 16.77 | 28.02 | $\mathbf{5 8}$ |
| MOSES | $\mathbf{3 0 . 1 9}$ | $\mathbf{3 1 . 9 8}$ | 42 |

Table 2: Comparison of Jaen and MOSES (1194 items)
Rule extraction machinery is being prepared for release

## Translation examples

（1）Source：我々は魚を生で食べる。
Ref．：We eat fish raw．
Moses：We eat fish raw．
Jaen：We eat fish in the camcorder．
（2）Source：カーテンがゆっくり引かれた。
Ref．：The curtains were drawn slowly．
Moses：The curtain was slowly．
Jaen：The curtain was drawn slowly．
（3）Source：偏見は持つ べきではない。
Ref．：We shouldn＇t have any prejudice．
Moses：You should have a bias．
Jaen：I shouldn＇t have prejudice．
Moses loses the negation $2 / 3$ of the time！
Improve by making negative training data by rephrasing（＋3．24 BLEU）

## Cross-lingual Syntactic Disambiguation

$>$ We can use translations to disambiguate syntax
$>$ ITG, DOP, syntax-based MT, . . . directly match trees
$>$ But translations match on the semantic level
$>$ Exploit MT systems to match meaning
$>$ Consider Japanese and English Text * parse Japanese to $\mathrm{J}_{M R S_{i}}$ (meaning)

* translate $\mathrm{J}_{M R S_{i}}$ to $\mathrm{E}(\mathrm{J})_{M R S_{j}}$
* parse English to $\mathrm{E}_{M R S_{k}}$
* best parse(s) $=\arg \max _{(i, k)}\left(\operatorname{sim}\left(\mathrm{E}(\mathrm{J})_{M R S_{k}}, \mathrm{E}_{M R S_{i}}\right)\right)$


## Matching Semantics



## Cross Lingual Disambiguation

Generally about 3 sentences have the same similarity: reduced ambiguity to $30 \%(11 \rightarrow 3)$. We can do better.

|  | English |  | Japanese |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Prec | F | Prec | F |
| First Rank | 0.659 | 0.791 | 0.676 | 0.803 |
| Included | 0.820 | 0.897 | 0.804 | 0.887 |
| for $71 \%$ of sentences that parse and partially translate |  |  |  |  |

## NANYANG TECHNOLOGICAL <br> MRS comparison as graph matching

> MRSs are (directed acyclic) graphs
$\Rightarrow$ inexact graph matching problem
> Differences between MRSs can be formulated in terms of graph edit operations, with associated costs:
$>$ insertion/deletion of EPs,
$>$ insertion/deletion of ARG links,
$>$ substitution of a relation following the type hierarchy. . .
> Transfer rules then correspond to sequences of graph edit operations.

## MRS comparison as graph matching

$>$ Pros
$>$ graph matching is more robust and flexible than comparing n-grams of Elementary Dependencies,
$>$ graph edit operations directly describe transfer rules,
$>$ Cons:
$>$ finding optimally interesting/useful edit costs is not trivial,
$>$ automatically partitioning the set of edit operations (between two big MRSs) into linguistically meaningful transfer rules is tricky
(guide with patterns e.g. $\mathrm{N}+\mathrm{ADJ} \rightarrow \mathrm{N}+\mathrm{N}$ )

## Current state

$>$ Implementation in python
$>$ matching; visualisation; graph persistency
$>$ Todo:
$>$ experiment with edit costs; share code; integrate

## Buggy but colorful



We have already found several bugs in Jaen.

## Norsyg - Norwegian Grammar

1. Produces conventional MRS representations
2. Uses the NorKompLeks lexicon (73,000 lexical entries)
$>$ Freely distributable (MIT licence)
$>$ The grammar uses the REPP preprocessor
$>$ Coverage of $\approx 30 \%$ on the LOGON Jotunheimen data
3. The grammar has been made strictly left-branching
$\Rightarrow$ all rules are of the form Phrase $\Rightarrow$ Word/Phrase, (Word)
$\Rightarrow$ compatible with incremental parsing
$>$ makes use of a STACK feature to account for constituent structure

## Stack and Constituent Structure



## WordNets

> Japanese Wordnet: variants, corpus, taboo words
> Chinese Wordnet: many new words, corpus

- English Wordnet: new entries, corpus
> Wordnet Bahasa: 50k synsets, 120k senses, corpus
$>$ In cooperation with Malay and Indonesian projects
> Open Multilingual Wordnet: combining open resources arb, eng, fas, fin, fre, heb, ind, jpn, tha, zsm


## NTU multilingual corpus

> Small, deeply analysed corpus
$>6,000$ sentences $\times 3$ languages ( cmn , eng, jpn)

* Mainichi Newspaper (NICT translations)
* Sherlock Holmes
* Cathedral and the Bazaar (plus many languages)
* Singapore Tourist data (plus Korean, Viet, Indo)
$>$ Hand alignment, WordNet tagging, Treebanking
>Plus a lot more Japanese-English (and some Chinese)
$>$ To help us in disambiguation when making the Japanese and Bahasa wordnets we needed to link various wordnets
$>$ There were many small idiosyncrasies
$>$ To make it easier for others we have released our combined database + scripts only for those resources whose license allows it
$>$ Hope to be superseded by a more flexible framework (ILI)
$>$ That allows new (especially) non-English synsets
$>$ That allows variants


## Current State (last week)

| Wordnet | Lang | Synsets | Words | Senses | Core | Licence |
| :--- | :---: | ---: | ---: | ---: | ---: | :--- |
| Arabic WordNet | arb | 10,165 | 14,595 | 21,751 | $48 \%$ | CC BY SA 3.0 |
| Princeton WordNet | eng | 117,659 | 148,730 | 206,978 | $100 \%$ | wordnet |
| Persian Wordnet | fas | 17,759 | 17,560 | 30,461 | $41 \%$ | Free to use |
| FinnWordNet | fin | 116,763 | 129,839 | 189,227 | $100 \%$ | CC BY 3.0 |
| WOLF | fre | 32,466 | 37,996 | 46,188 | $48 \%$ | CeCILL-C |
| Hebrew Wordnet | heb | 5,448 | 5,325 | 6,872 | $27 \%$ | GPL |
| Japanese Wordnet* | jpn | 57,178 | 91,959 | 158,062 | $95 \%$ | wordnet |
| Wordnet Bahasa* | ind | 19,260 | 19,659 | 48,317 | $98 \%$ | MIT |
|  | zsm | 19,267 | 19,638 | 48,321 | $98 \%$ | MIT |
| OpenWN-PT | por | 34,087 | 35,811 | 51,471 | $77 \%$ | CC by SA 3.0 |
| Thai Wordnet | tha | 73,350 | 82,504 | 95,517 | $81 \%$ | wordnet |

> http://casta-net.jp/~kuribayashi/multi/
> Just got: Italian; Spanish, Catalan, Galician, Basque
Danish, Norwegian (Bokmal/Nynorsk) (10 $\rightarrow 20$ this year)

## Wordnets in the world 2011-06



## Wordnets in the world 2012-01



Added: Finnish, Persian, Bahasa

## Wordnets in the world 2012-06



Added: Norwegian; Freed: Italian, Portuguese, Spanish

## What is lacking？

＞German，Chinese，Bulgarian，．．．
$>$ Proper handling of orthographic variants
$>$ Japanese：桧，檜，ひのき，ヒノキ，火の木 hinoki
$>$ Hebrew，Arabic：with and without diacritics
$>$ English：color，colour；data base，data－base，database
$>$ Richer morphological information（not just v，a，n，r）
$>$ Substructure for MWEs
$>$ Sense specific frequencies
（cross－lingually annotate）
$>$ ToDo：Setting up shared multilingual index

## Effects of different licenses

| Size | Date | Open | Free | Non free |
| :--- | :---: | :---: | :---: | :---: |
| Large | 2009 | Danish/Thai |  | Korean |
|  |  | $8 / 4$ | 5 |  |
| Large 2008 | Japanese | Dutch |  |  |
|  |  | 24 | 19 |  |
| Small 2008 | French | Slovenian | Bulgarian |  |
|  |  | 22 | 13 | 3 |

Uptake of a resource partially depends on how usable (legally accesible) the resource is.

## Synset：07229245－n

## thank you kiitos

## merci

je vous remercie
ありがとう
サンキュー
terima kasih terima kasih
agradecimento

