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Overview

ã NTU

â Machine Translation (Jaen, SMT)

â Grammars: Jacy, Norsyg, MCG

â Cross-lingual parse selection and rephrasing

â Wordnets: Japanese, English, Chinese, Malay, Multi

â NTU Multilingual corpus

â Classifiers

ã NTT Report (Sanae Fujita & Takaaki Tanaka)

Release of GoiTaikei — A Japanese Lexicon (NC) almost

Joint work with NTU on corpus annotation and WSD
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Jaen

ã Japanese-English MT system using LOGON transfer

ã core of hand-written rules

ã open rules (some quite complex) learned from corpora

â 10 million word J-E parallel corpus

â learn rules from phrase table based on lemmas

∗ learn from all sentences — high cover

â learn rules from phrase table based on predicates

∗ learn from parsed sentences (1/3)— high precision

Petter and I 2



Results

Parsing Transfer Generation Overall NEVA Oracle F1

Lemm 79.8% 46.6% 56.0% 20.8% 18.65 22.99 19.69

Pred 79.8% 49.7% 52.6% 20.8% 21.11 25.75 20.96

All 79.8% 60.9% 54.7% 26.5% 19.77 24.00 22.66

Table 1: Evaluation of the Tanaka Corpus Test Data

BLEU METEOR HUMAN
JaEn (All) 16.77 28.02 58
MOSES 30.19 31.98 42

Table 2: Comparison of Jaen and MOSES (1194 items)

Rule extraction machinery is being prepared for release

SSST6 3



Translation examples

(1) Source: 我々 は 魚 を 生 で 食べる 。
Ref.: We eat fish raw.
Moses: We eat fish raw.
Jaen: We eat fish in the camcorder.

(2) Source: カーテン が ゆっくり 引か れ た 。
Ref.: The curtains were drawn slowly.
Moses: The curtain was slowly.
Jaen: The curtain was drawn slowly.

(3) Source: 偏見 は 持つ べき で は ない 。
Ref.: We shouldn’t have any prejudice.
Moses: You should have a bias.
Jaen: I shouldn’t have prejudice.

Moses loses the negation 2/3 of the time!

Improve by making negative training data by rephrasing (+3.24 BLEU)

Ask Dominkus about creating negative training data for SMT (SSST6) 4



Cross-lingual Syntactic Disambiguation

ã We can use translations to disambiguate syntax

â ITG, DOP, syntax-based MT, . . . directly match trees

â But translations match on the semantic level

ã Exploit MT systems to match meaning

â Consider Japanese and English Text

∗ parse Japanese to JMRSi
(meaning)

∗ translate JMRSi
to E(J)MRSj

∗ parse English to EMRSk

∗ best parse(s) = argmax(i,k)(sim(E(J)MRSk
,EMRSi

))

Ask Lea for more details or go to ACL 5



Matching Semantics
I saw the guard with the telesope Transfer: E(J)MRS 望遠鏡でガードを見た
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Cross Lingual Disambiguation

Generally about 3 sentences have the same similarity:

reduced ambiguity to 30% (11 →3). We can do better.

English Japanese

Prec F Prec F

First Rank 0.659 0.791 0.676 0.803

Included 0.820 0.897 0.804 0.887
for the 71% of sentences that parse and partially translate

Ask Lea for more details or go to ACL 7



MRS comparison as graph matching

ã MRSs are (directed acyclic) graphs

⇒inexact graph matching problem

ã Differences between MRSs can be formulated in terms of

graph edit operations, with associated costs:

â insertion/deletion of EPs,

â insertion/deletion of ARG links,

â substitution of a relation following the type hierarchy. . .

ã Transfer rules then correspond to sequences of graph edit

operations.

Ask Mathieu for more details 8



MRS comparison as graph matching

ã Pros

â graph matching is more robust and flexible than comparing

n-grams of Elementary Dependencies,

â graph edit operations directly describe transfer rules,

ã Cons:

â finding optimally interesting/useful edit costs is not trivial,

â automatically partitioning the set of edit operations

(between two big MRSs) into linguistically meaningful

transfer rules is tricky

(guide with patterns e.g. N+ADJ → N+N)

Ask Mathieu for more details 9



Current state

ã Implementation in python

â matching; visualisation; graph persistency

ã Todo:

â experiment with edit costs; share code; integrate

Ask Mathieu for more details 10



Buggy but colorful

We have already found several bugs in Jaen.

Ask Mathieu for more details 11



Norsyg – Norwegian Grammar

1. Produces conventional MRS representations

2. Uses the NorKompLeks lexicon (73,000 lexical entries)

ã Freely distributable (MIT licence)

ã The grammar uses the REPP preprocessor

ã Coverage of ≈ 30% on the LOGON Jotunheimen data

3. The grammar has been made strictly left-branching

⇒ all rules are of the form Phrase ⇒ Word/Phrase, (Word)

⇒ compatible with incremental parsing

ã makes use of a stack feature to account for constituent

structure

Ask Petter for details 12



Stack and Constituent Structure



popping-rule
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Ask Petter for details 13



WordNets

ã Japanese Wordnet: variants, corpus, taboo words

ã Chinese Wordnet: many new words, corpus

ã English Wordnet: new entries, corpus

ã Wordnet Bahasa: 50k synsets, 120k senses, corpus ,

â In cooperation with Malay and Indonesian projects

ã Open Multilingual Wordnet: combining open resources

arb, eng, fas, fin, fre, heb, ind, jpn, tha, zsm

Mainly me and my undergraduates now 14



NTU multilingual corpus

ã Small, deeply analysed corpus

â 6,000 sentences x 3 languages (cmn, eng, jpn)

∗ Mainichi Newspaper (NICT translations)

∗ Sherlock Holmes

∗ Cathedral and the Bazaar (plus many languages)

∗ Singapore Tourist data (plus Korean, Viet, Indo)

â Hand alignment, WordNet tagging, Treebanking

ã Plus a lot more Japanese-English (and some Chinese)

Tan Liling 15



An Accessible Multilingual Wordnet

ã To help us in disambiguation when making the Japanese and

Bahasa wordnets we needed to link various wordnets

ã There were many small idiosyncrasies /

ã To make it easier for others we have released our combined

database + scripts

only for those resources whose license allows it

ã Hope to be superseded by a more flexible framework (ILI)

â That allows new (especially) non-English synsets

â That allows variants

Ask me about these 16



Current State (last week)
Wordnet Lang Synsets Words Senses Core Licence

Arabic WordNet arb 10,165 14,595 21,751 48% CC BY SA 3.0

Princeton WordNet eng 117,659 148,730 206,978 100% wordnet

Persian Wordnet fas 17,759 17,560 30,461 41% Free to use

FinnWordNet fin 116,763 129,839 189,227 100% CC BY 3.0

WOLF fre 32,466 37,996 46,188 48% CeCILL-C

Hebrew Wordnet heb 5,448 5,325 6,872 27% GPL

Japanese Wordnet∗ jpn 57,178 91,959 158,062 95% wordnet

Wordnet Bahasa∗ ind 19,260 19,659 48,317 98% MIT

zsm 19,267 19,638 48,321 98% MIT

OpenWN-PT por 34,087 35,811 51,471 77% CC by SA 3.0

Thai Wordnet tha 73,350 82,504 95,517 81% wordnet

ã http://casta-net.jp/~kuribayashi/multi/

ã Just got: Italian; Spanish, Catalan, Galician, Basque

Danish, Norwegian (Bokmal/Nynorsk) (10 →20 this year)

Ask me about these 17



Wordnets in the world 2011-06

Green is free; Blue is research only; Brown costs money 18



Wordnets in the world 2012-01

Added: Finnish, Persian, Bahasa

Green is free; Blue is research only; Brown costs money 19



Wordnets in the world 2012-06

Added: Norwegian; Freed: Italian, Portuguese, Spanish

Green is free; Blue is research only; Brown costs money 20



What is lacking?

ã German, Chinese, Bulgarian, . . . /

ã Proper handling of orthographic variants

â Japanese: 桧, 檜, ひのき, ヒノキ, 火の木 hinoki

â Hebrew, Arabic: with and without diacritics

â English: color, colour; data base, data-base, database

ã Richer morphological information (not just v,a,n,r)

ã Substructure for MWEs

ã Sense specific frequencies (cross-lingually annotate)

ã ToDo: Setting up shared multilingual index

21



Effects of different licenses

Size Date Open Free Non free

Large 2009 Danish/Thai Korean

8/4 5

Large 2008 Japanese Dutch

24 19

Small 2008 French Slovenian Bulgarian

22 13 3

Uptake of a resource partially depends on how usable

(legally accesible) the resource is.

22



Synset: 07229245-n

thank you

kiitos

merci

je vous remercie

ありがとう

サンキュー

terima kasih

terima kasih

agradecimento

I can’t print the Thai 23


