Rebecca Dridan

University of Oslo

DELPH-IN Summit St Wendel, July 2013

Rebecca Dridan - UiO

First there was supertagging

Assigning fine-grained lexical categories to tokens for:

- lexical acquition, unknown word handling
- parser efficiency, via lexical pruning
- Supertagging/lexical prediction for the ERG:
 - Zhang, 2007
 - Blunsom, 2007
 - Dridan, 2009
 - Ytrestøl, 2012
 - ► Fares, 2013

All showed potential, none are actually being used in parsing now.

Which tokens?

Raw 'Sun-filled', well-kept Mountain View. REPP **initial tokens** $\langle ' \rangle$, $\langle Sun-filled \rangle$, $\langle ' \rangle$, \langle , \rangle , $\langle well-kept \rangle$, $\langle Mountain \rangle, \langle View \rangle, \langle . \rangle$ chart-mapping **internal tokens** ('Sun-), (filled',), (well-), (kept), (Mountain), $\langle View. \rangle$. lexicon lookup lexical tokens $\langle \text{'sun-} \rangle$, $\langle \text{filled'}, \rangle$, $\langle \text{well-kept} \rangle$, $\langle \text{Mountain} \rangle$ View. \langle , \langle well- \rangle , \langle kept \rangle , \langle Mountain \rangle , \langle View. \rangle ,

Which tokens?

Raw	'Sun-filled', well-kept Mountain View.			
	REPP			
initial tokens	$ \begin{array}{ll} \langle `\rangle, & \langle {\sf Sun-filled} \rangle, & \langle `\rangle, & \langle ,\rangle, & \langle {\sf well-kept} \rangle, \\ \langle {\sf Mountain} \rangle, & \langle {\sf View} \rangle, & \langle . \rangle \end{array} $			
	chart-mapping			
internal tokens	\langle 'Sun- \rangle , \langle filled', \rangle , \langle well- \rangle , \langle kept \rangle , \langle Mountain \rangle , \langle View. \rangle ,			
	lexicon lookup			
lexical tokens	<pre>('sun-), (filled',), (well- kept), (Mountain View.), (well-), (kept), (Mountain), (View.),</pre>			

Lexical tokenisation is ambiguous.

Nebecca Driuan - 010	Rebecca	Dridan -	UiO
----------------------	---------	----------	-----

Übertagging predicts the correct path through the lattice, tokenising and supertagging at the same time.

Übertagging predicts the correct path through the lattice, tokenising and supertagging at the same time.

Übertagging predicts the correct path through the lattice, tokenising and supertagging at the same time.

Standard HMM:

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} Pr(s_i | s_{i-1}) Pr(o_i | s_i) \cdot Pr(\langle E \rangle | s_n)$$

with $s_0 = \langle S \rangle$

Standard HMM:

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} Pr(s_i | s_{i-1}) Pr(o_i | s_i) \cdot Pr(\langle E \rangle | s_n)$$

with $s_0 = \langle S \rangle$

In a segmental HMM, we have:

- ▶ frames, equivalent to the time slices in a standard HMM; and
- segments, of one or more frames in length

Standard HMM:

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} Pr(s_i | s_{i-1}) Pr(o_i | s_i) \cdot Pr(\langle E \rangle | s_n)$$

with $s_0 = \langle S \rangle$

In a segmental HMM, we have:

- frames, equivalent to the time slices in a standard HMM; and
- segments, of one or more frames in length

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} Pr(t_i|t_{i-1}) Pr(1|t) Pr(o_{i-1+1:i}|t, 1)$$

Standard HMM:

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} \frac{Pr(s_i|s_{i-1})}{Pr(o_i|s_i)} \cdot Pr(\langle E \rangle |s_n)$$

with $s_0 = \langle S \rangle$

In a segmental HMM, we have:

- frames, equivalent to the time slices in a standard HMM; and
- segments, of one or more frames in length

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} \frac{Pr(t_i|t_{i-1})}{Pr(1|t)} Pr(1|t) Pr(o_{i-1+1:i}|t, 1)$$

Standard HMM:

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} \frac{Pr(s_i|s_{i-1})}{Pr(o_i|s_i) \cdot Pr(\langle E \rangle |s_n)}$$

with $s_0 = \langle S \rangle$

In a segmental HMM, we have:

- frames, equivalent to the time slices in a standard HMM; and
- segments, of one or more frames in length

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} \frac{Pr(t_i|t_{i-l})Pr(l|t)}{Pr(o_{i-l+1:i}|t, l)}$$

Standard HMM:

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} \frac{Pr(s_i|s_{i-1}) Pr(o_i|s_i)}{Pr(o_i|s_i)} \cdot Pr(\langle E \rangle |s_n)$$

with $s_0 = \langle S \rangle$

In a segmental HMM, we have:

- frames, equivalent to the time slices in a standard HMM; and
- segments, of one or more frames in length

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} \frac{Pr(t_i|t_{i-1})Pr(l|t)}{Pr(o_{i-l+1:i}|t, l)}$$

The Model	
00000000 0000	

Training

Supervised training using relative frequency counts

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} \frac{Pr(t_i|t_{i-1}) Pr(l|t)}{Pr(o_{i-l+1:i}|t, l)}$$

The Model	
00000000 0000	

Training

Supervised training using relative frequency counts

$$Pr(S_{0:n}, O_{0:n}) = \prod_{i=1}^{n} \frac{Pr(t_i|t_{i-1})}{Pr(1|t)} \frac{Pr(1|t)}{Pr(o_{i-1+1:i}|t, 1)}$$

$$\frac{Pr(t_i|t_{pp}t_p)}{C(t_{pp} t_p)} = \frac{C(t_{pp} t_p t_i)}{C(t_{pp} t_p)} \text{ (trigram)}$$

$$\frac{Pr(l|t)Pr(o_{i-l+1:i}|l,t)}{C(t)} = \frac{C(l,t)}{C(t)} \cdot \frac{C(o_{i-l+1:i},l,t)}{C(l,t)}$$
$$= \frac{C(o_{i-l+1:i},l,t)}{C(t)}$$

Rebecca Dridan - UiO

The Model	
0000	

Training

			Lexite	ems
Data Set	Gold?	Trees	All	M-T
DeepBank 1.0 §00–19	yes	33783	661451	6309
Redwoods Treebank	yes	39478	432873	6568
NANC	no	2185323	42376523	399936

Tag types:

- FULL: lexical type plus all lexical rules v_np_le:v_prp_olr:v_nger-tr_dlr:w_comma-nf_plr
- INFL: lexical type plus non-punctuation lexical rules v_np_le:v_prp_olr:v_nger-tr_dlr
- LTYPE: lexical type v_np_le

. ..

Observation Complication

Surface form capitalisation is a important clue in assigning tags, *but* this has been 'normalised' within the parser.

Current solution: observation consists of tLexItem's orth() plus information stored at +CLASS.+CASE in the token input feature structure, e.g.

agency:capitalized+lower n_-_mc_le:n_ms-cnt_ilr Agency n_-_pn-gen_le:n_sg_ilr

Not ideal, but at least they are conceptually the same observation.

Tagging: Best Path

Using Viterbi, we pick the best path:

	Segmentation		n Tagging	
Tag Type	F1	Sent.	F1	Sent.
FULL	99.55	94.48	93.92	42.13
INFL	99.45	93.55	93.74	41.49
LTYPE	99.40	93.03	93.27	38.12

Tagging: Best Path

Using Viterbi, we pick the best path:

	Segme	entation	1 Tagging		
Тад Туре	F1	Sent.	F1	Sent.	
FULL	99.55	94.48	93.92	42.13	
INFL	99.45	93.55	93.74	41.49	
LTYPE	99.40	93.03	93.27	38.12	

Quite good, but not good enough for parsing. Instead we calculate posterior probabilities of each lexitem, and prune those lower than threshold *rho*.

Tagging: Multi-tagging

Tag	Lexitems			
Туре	ho	Acc.	Kept	Ave.
FULL	0.00001	99.71	41.6	3.34
FULL	0.0001	99.44	33.1	2.66
FULL	0.001	98.92	25.5	2.05
FULL	0.01	97.75	19.4	1.56
INFL	0.0001	99.67	37.9	3.04
INFL	0.001	99.25	29.0	2.33
INFL	0.01	98.21	21.6	1.73
INFL	0.02	97.68	19.7	1.58
LTYPE	0.0002	99.75	66.3	5.33
LTYPE	0.002	99.43	55.0	4.42
LTYPE	0.02	98.41	43.5	3.50
LTYPE	0.05	97.54	39.4	3.17

	Result
0000	0000

Parsing

Tag Type	ρ	Lexitem	Bracket	Time
No Pri	ıning	94.06	88.58	6.58
FULL	0.00001	95.62	89.84	3.99
FULL	0.0001	95.95	90.09	2.69
FULL	0.001	95.81	89.88	1.34
FULL	0.01	94.19	88.29	0.64
INFL	0.0001	96.10	90.37	3.45
INFL	0.001	96.14	90.33	1.78
INFL	0.01	95.07	89.27	0.84
INFL	0.02	94.32	88.49	0.64
LTYPE	0.0002	95.37	89.63	4.73
LTYPE	0.002	96.03	90.20	2.89
LTYPE	0.02	95.04	89.04	1.23
LTYPE	0.05	93.36	87.26	0.88

Parsing

Parser accuracy versus efficiency

Conclusions

	Baseline		Pruned	
Data Set	F_1	Time	F_1	Time
WSJ ₂₁	88.12	6.06	89.93	1.77
$WeScience_{13}$	86.25	4.09	87.14	1.48
CatB	86.31	5.00	87.11	1.78

- We can select a configuration that gives at least 2-3 times speed up with an increase in F₁ across a variety of data sets
- The speed versus accuracy trade-off can be easily tuned to an application's requirements
- Many of the errors arise from the proper noun vs common noun choice in noun compounds which:
 - may not be important for many applications
 - could probably be more consistent/standardised in the grammar and treebanks

Thank You!

Rebecca Dridan - UiO

Download

PET branch with übertagging

https://pet.opendfki.de/repos/pet/branches/uebertagger Only needs the trigram models to be in the grammar.

Training code

http://svn.dridan.com/sandpit/uebertagger

But you need training data in the right form:

 $\langle \, observation$ - possibly including case class $\rangle \quad \langle \, tag \, \rangle$

These links will change, once I work out integration details with both grammar developers and other PET developers, but it is available to test now.

Rebecca Dridan - UiO