Übertagging

Rebecca Dridan
University of Oslo
DELPH-IN Summit
St Wendel, July 2013

First there was supertagging

- Assigning fine-grained lexical categories to tokens for:
- lexical acquition, unknown word handling
- parser efficiency, via lexical pruning
- Supertagging/lexical prediction for the ERG:
- Zhang, 2007
- Blunsom, 2007
- Dridan, 2009
- Ytrestøl, 2012
- Fares, 2013

All showed potential, none are actually being used in parsing now.

Which tokens？

Raw＇Sun－filled＇，well－kept Mountain View．

REPP

initial tokens $\langle '\rangle,\langle$ Sun－filled $\rangle,\langle '\rangle,\langle\rangle,,\langle$ well－kept \rangle,
\langle Mountain \rangle,\langle View \rangle,\langle.
chart－mapping
internal tokens 〈＇Sun－〉，〈 filled＇，\rangle,\langle well－\rangle,\langle kept \rangle,\langle Mountain \rangle, \langle View．\rangle ，
lexicon lookup
lexical tokens $\langle ‘ s u n-\rangle,\langle$ filled＇，\rangle,\langle well－kept $\rangle,\langle M o u n t a i n$ View．\rangle,\langle well－\rangle,\langle kept \rangle,\langle Mountain $\rangle,\langle V i e w\rangle,$.

Which tokens？

Raw＇Sun－filled＇，well－kept Mountain View．

REPP

initial tokens $\langle '\rangle,\langle$ Sun－filled $\rangle,\langle '\rangle,\langle\rangle,,\langle$ well－kept \rangle,
\langle Mountain \rangle,\langle View \rangle,\langle.
chart－mapping
internal tokens 〈＇Sun－〉，〈 filled＇，\rangle,\langle well－\rangle,\langle kept \rangle,\langle Mountain \rangle, \langle View．\rangle ，
lexicon lookup
lexical tokens \langle＇sun－\rangle,\langle filled＇，\rangle,\langle well－kept $\rangle,\langle M o u n t a i n$ View．\rangle,\langle well－\rangle,\langle kept \rangle,\langle Mountain $\rangle,\langle V i e w\rangle,$.

Lexical tokenisation is ambiguous．

Übertagging

Übertagging predicts the correct path through the lattice, tokenising and supertagging at the same time.

Übertagging

Übertagging predicts the correct path through the lattice, tokenising and supertagging at the same time.

n
n
p
n
V
aj

Übertagging

Übertagging predicts the correct path through the lattice， tokenising and supertagging at the same time．

〈This〉 〈kind of〉 〈theatre〉 〈was〉 〈new．〉
n
av
n
v
aj

Hidden semi-Markov Models

Standard HMM:

$$
\begin{array}{r}
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(s_{i} \mid s_{i-1}\right) \operatorname{Pr}\left(o_{i} \mid s_{i}\right) \cdot \operatorname{Pr}\left(\langle E\rangle \mid s_{n}\right) \\
\text { with } s_{0}=\langle S\rangle
\end{array}
$$

Hidden semi-Markov Models

Standard HMM:

$$
\begin{array}{r}
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(s_{i} \mid s_{i-1}\right) \operatorname{Pr}\left(o_{i} \mid s_{i}\right) \cdot \operatorname{Pr}\left(\langle E\rangle \mid s_{n}\right) \\
\text { with } s_{0}=\langle S\rangle
\end{array}
$$

In a segmental HMM, we have:

- frames, equivalent to the time slices in a standard HMM; and
- segments, of one or more frames in length

Hidden semi-Markov Models

Standard HMM:

$$
\begin{array}{r}
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(s_{i} \mid s_{i-1}\right) \operatorname{Pr}\left(o_{i} \mid s_{i}\right) \cdot \operatorname{Pr}\left(\langle E\rangle \mid s_{n}\right) \\
\text { with } s_{0}=\langle S\rangle
\end{array}
$$

In a segmental HMM, we have:

- frames, equivalent to the time slices in a standard HMM; and
- segments, of one or more frames in length

States in a segmental HMM have a tag, t and a length, I.

$$
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(t_{i} \mid t_{i-l}\right) \operatorname{Pr}(I \mid t) \operatorname{Pr}\left(o_{i-I+1: i} \mid t, l\right)
$$

Hidden semi-Markov Models

Standard HMM:

$$
\begin{array}{r}
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(s_{i} \mid s_{i-1}\right) \operatorname{Pr}\left(o_{i} \mid s_{i}\right) \cdot \operatorname{Pr}\left(\langle E\rangle \mid s_{n}\right) \\
\text { with } s_{0}=\langle S\rangle
\end{array}
$$

In a segmental HMM, we have:

- frames, equivalent to the time slices in a standard HMM; and
- segments, of one or more frames in length

States in a segmental HMM have a tag, t and a length, I.

$$
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(t_{i} \mid t_{i-l}\right) \operatorname{Pr}(I \mid t) \operatorname{Pr}\left(o_{i-I+1: i} \mid t, l\right)
$$

Hidden semi-Markov Models

Standard HMM:

$$
\begin{array}{r}
\operatorname{Pr}\left(s_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(s_{i} \mid s_{i-1}\right) \operatorname{Pr}\left(o_{i} \mid s_{i}\right) \cdot \operatorname{Pr}\left(\langle E\rangle \mid s_{n}\right) \\
\text { with } s_{0}=\langle S\rangle
\end{array}
$$

In a segmental HMM, we have:

- frames, equivalent to the time slices in a standard HMM; and
- segments, of one or more frames in length

States in a segmental HMM have a tag, t and a length, I.

$$
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(t_{i} \mid t_{i-l}\right) \operatorname{Pr}(I \mid t) \operatorname{Pr}\left(o_{i-I+1: i} \mid t, l\right)
$$

Hidden semi-Markov Models

Standard HMM:

$$
\begin{array}{r}
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(s_{i} \mid s_{i-1}\right) \operatorname{Pr}\left(o_{i} \mid s_{i}\right) \cdot \operatorname{Pr}\left(\langle E\rangle \mid s_{n}\right) \\
\text { with } s_{0}=\langle S\rangle
\end{array}
$$

In a segmental HMM, we have:

- frames, equivalent to the time slices in a standard HMM; and
- segments, of one or more frames in length

States in a segmental HMM have a tag, t and a length, I.

$$
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(t_{i} \mid t_{i-l}\right) \operatorname{Pr}(I \mid t) \operatorname{Pr}\left(o_{i-I+1: i} \mid t, l\right)
$$

Hidden semi-Markov Models

Training

Supervised training using relative frequency counts

$$
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(t_{i} \mid t_{i-l}\right) \operatorname{Pr}(I \mid t) \operatorname{Pr}\left(o_{i-l+1: i} \mid t, l\right)
$$

Training

Supervised training using relative frequency counts

$$
\begin{gathered}
\operatorname{Pr}\left(S_{0: n}, O_{0: n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(t_{i} \mid t_{i-I}\right) \operatorname{Pr}(I \mid t) \operatorname{Pr}\left(o_{i-I+1: i} \mid t, I\right) \\
\operatorname{Pr}\left(t_{i} \mid t_{p p} t_{p}\right)=\frac{C\left(t_{p p} t_{p} t_{i}\right)}{C\left(t_{p p} t_{p}\right)}(\text { trigram }) \\
\operatorname{Pr}(I \mid t) \operatorname{Pr}\left(o_{i-I+1: i} \mid I, t\right) \\
=\frac{C(I, t)}{C(t)} \cdot \frac{C\left(o_{i-I+1: i}, I, t\right)}{C(I, t)} \\
\end{gathered}
$$

Training

		Lexitems		
Data Set	Gold?	Trees	All	M-T
DeepBank 1.0 §00-19	yes	33783	661451	6309
Redwoods Treebank	yes	39478	432873	6568
NANC	no	2185323	42376523	399936

Tag types:

- FULL: lexical type plus all lexical rules v_np_le:v_prp_olr:v_nger-tr_dlr:w_comma-nf_plr
- infl: lexical type plus non-punctuation lexical rules v_np_le:v_prp_olr:v_nger-tr_dlr
- LTYPE: lexical type v_np_le

Observation Complication

Surface form capitalisation is a important clue in assigning tags, but this has been 'normalised' within the parser.

Current solution: observation consists of tLexltem's orth() plus information stored at +CLASS.+CASE in the token input feature structure, e.g.

$$
\begin{array}{ll}
\text { agency:capitalized+lower } & \text { n_-_mc_le:n_ms-cnt_ilr } \\
\text { Agency } & \text { n_-_pn-gen_le:n_sg_ilr }
\end{array}
$$

Not ideal, but at least they are conceptually the same observation.

Tagging: Best Path

Using Viterbi, we pick the best path:

	Segmentation		Tagging	
Tag Type	F1	Sent.	F1	Sent.
FULL	99.55	94.48	93.92	42.13
INFL	99.45	93.55	93.74	41.49
LTYPE	99.40	93.03	93.27	38.12

Tagging: Best Path

Using Viterbi, we pick the best path:

	Segmentation		Tagging	
Tag Type	F1	Sent.	F1	Sent.
FULL	99.55	94.48	93.92	42.13
INFL	99.45	93.55	93.74	41.49
LTYPE	99.40	93.03	93.27	38.12

Quite good, but not good enough for parsing. Instead we calculate posterior probabilities of each lexitem, and prune those lower than threshold rho.

Tagging: Multi-tagging

Tag			Lexitems	
Type	$\boldsymbol{\rho}$	Acc.	Kept	Ave.
FULL	0.00001	99.71	41.6	3.34
FULL	0.0001	99.44	33.1	2.66
FULL	0.001	98.92	25.5	2.05
FULL	0.01	97.75	19.4	1.56
INFL	0.0001	99.67	37.9	3.04
INFL	0.001	99.25	29.0	2.33
INFL	0.01	98.21	21.6	1.73
INFL	0.02	97.68	19.7	1.58
LTYPE	0.0002	99.75	66.3	5.33
LTYPE	0.002	99.43	55.0	4.42
LTYPE	0.02	98.41	43.5	3.50
LTYPE	0.05	97.54	39.4	3.17

Tagging

Tag accuracy versus ambiguity

Parsing

Tag Type		$\boldsymbol{\rho}$	Lexitem	Bracket
No Pruning		94.06	88.58	6.58
FULL	0.00001	95.62	89.84	3.99
FULL	0.0001	95.95	90.09	2.69
FULL	0.001	95.81	89.88	1.34
FULL	0.01	94.19	88.29	0.64
INFL	0.0001	96.10	90.37	3.45
INFL	0.001	96.14	90.33	1.78
INFL	0.01	95.07	89.27	0.84
INFL	0.02	94.32	88.49	0.64
LTYPE	0.0002	95.37	89.63	4.73
LTYPE	0.002	96.03	90.20	2.89
LTYPE	0.02	95.04	89.04	1.23
LTYPE	0.05	93.36	87.26	0.88

Parsing

Conclusions

Baseline Pruned

Data Set	\mathbf{F}_{1}	Time	\mathbf{F}_{1}	Time
WSJ $_{21}$	88.12	6.06	89.93	1.77
WeScience $_{13}$	86.25	4.09	87.14	1.48
CatB	86.31	5.00	87.11	1.78

- We can select a configuration that gives at least 2-3 times speed up with an increase in F_{1} across a variety of data sets
- The speed versus accuracy trade-off can be easily tuned to an application's requirements
- Many of the errors arise from the proper noun vs common noun choice in noun compounds which:
- may not be important for many applications
- could probably be more consistent/standardised in the grammar and treebanks

Thank You!

Download

PET branch with übertagging

https：／／pet．opendfki．de／repos／pet／branches／uebertagger
Only needs the trigram models to be in the grammar．

Training code

> http://svn.dridan.com/sandpit/uebertagger

But you need training data in the right form：〈observation－possibly including case class〉 〈tag〉

These links will change，once I work out integration details with both grammar developers and other PET developers，but it is available to test now．

