

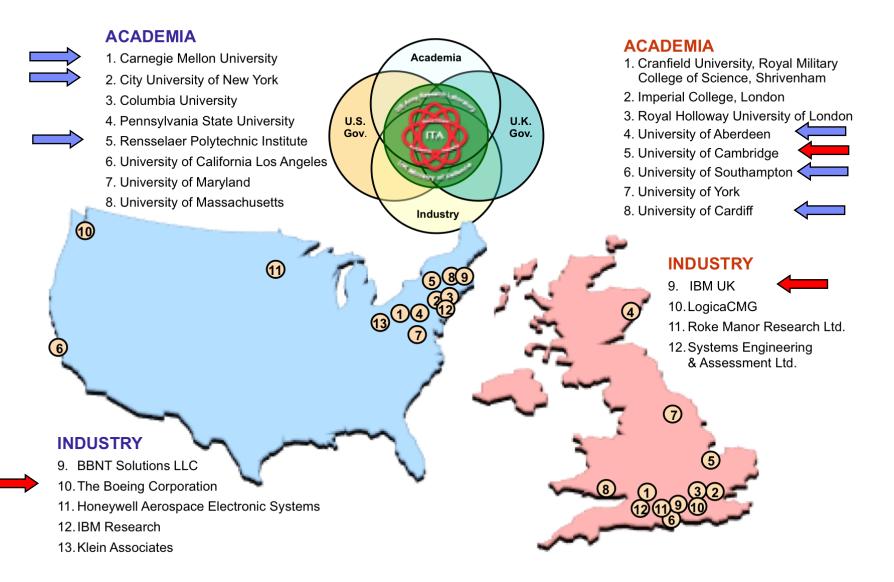
SWG Strategy

Fact Extraction using Controlled English and the English Resource Grammar

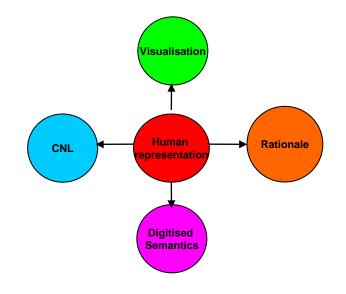
David Mott, ETS, IBM UK Stephen Poteet, Ping Xue, Anne Kao, Boeing Ann Copestake, University of Cambridge

DELPH-IN Summit 31st July 2013

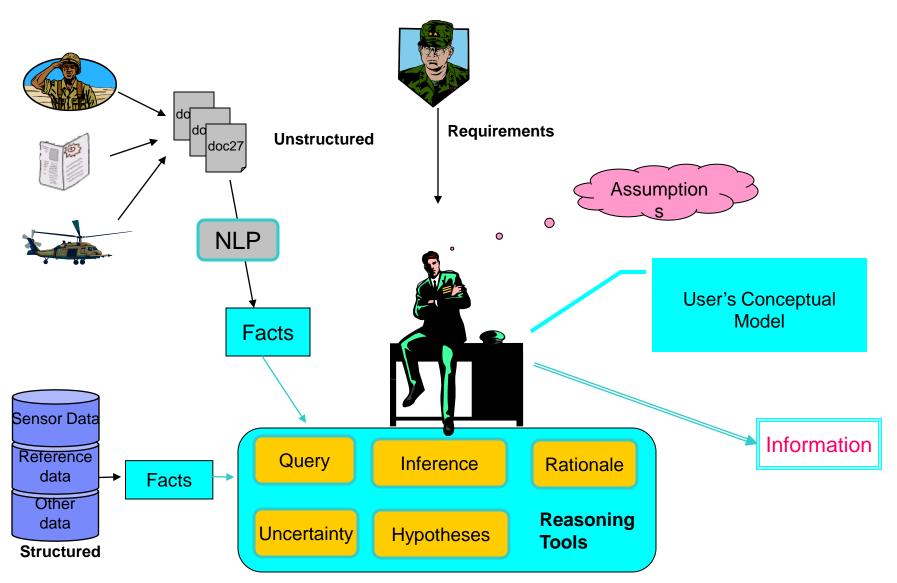
(C) Copyright IBM Corp. 2006, 2013. All Rights Reserved.


Agenda

- The ITA programme
- Controlled English
- Previous research into fact extraction, reasoning and NL processing
- New research using the resources from DELPH-IN
- Questions (mine)


The ITA programme

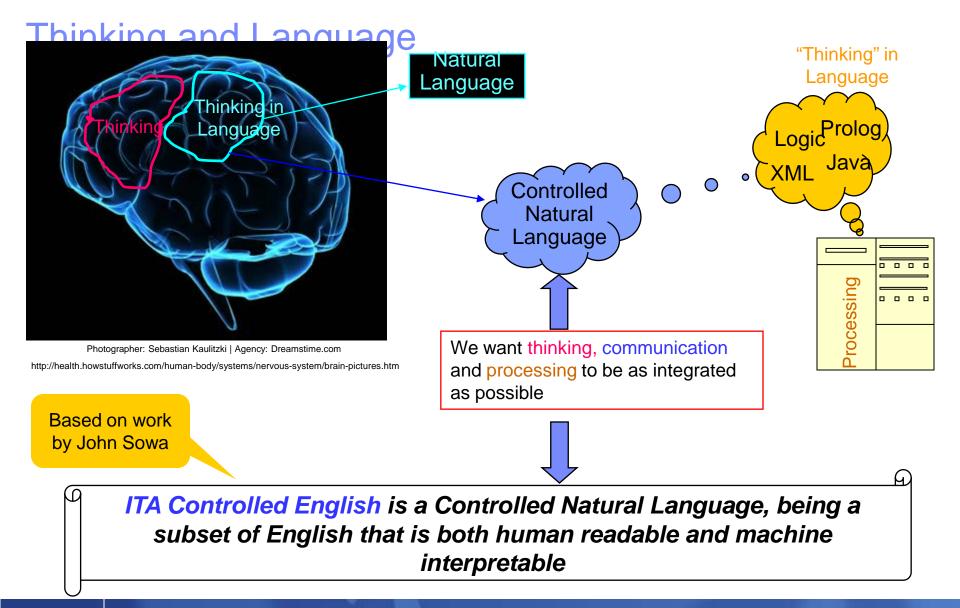
ITA Programme



Some Research Issues

- How do we assist people to create and use applications that reason?
 - Modelling concepts, relationships and rules of inference
 - Grasping the basic logic of the model and rules
 - Understanding the reasoning performed by others
 - Sharing understanding across the human team
 - Sharing reasoning and results across different systems

Supporting the user

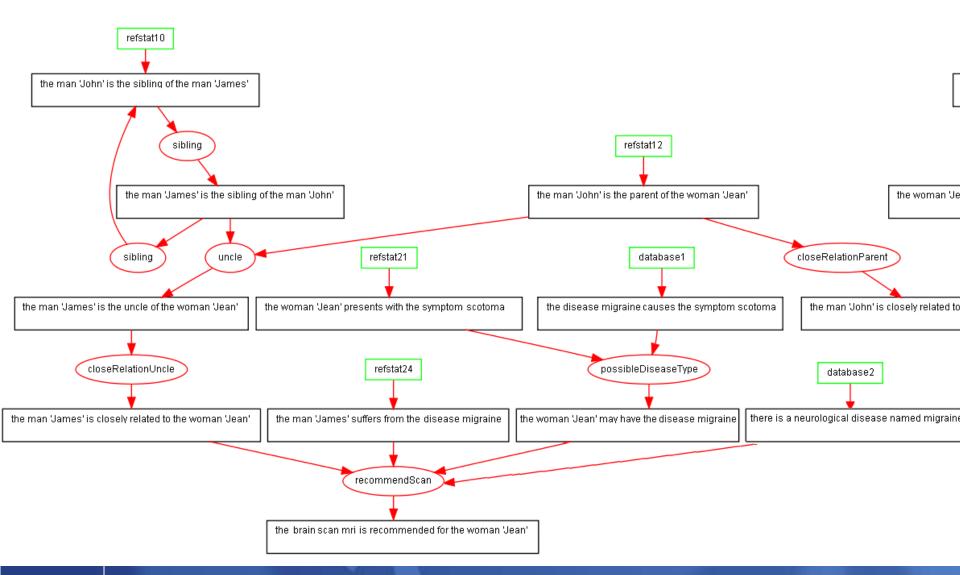

User's "Conceptual Model"

- User represents specialist knowledge as concepts, facts and rules for inference
 - a conceptual model
 - a common set of concepts
- The system must "understand" the conceptual model
 - assist user to search for patterns, deduce information
- A language to build the conceptual model
 - user: easy to understand
 - system: readable, unambiguous and formal
- We use a **Controlled Natural Language** to express the model

Controlled English

Reasoning - How people might write facts

Family History	the man John is the parent of the woman Jean and is the sibling of the man James. the person James suffers from the disease migraine.
Patient	the woman Jean is a patient and presents with the symptom scotoma.
Medical Information	there is a visual symptom named scotoma. there is a neurological disease named migraine. there is a brain scan named mri. the disease XXX causes the symptom YYY.


This is how we input to the computer, and we want the answers in the same style

the brain scan mri is recommended for the woman Jean.

Reasoning using logical rules

Family relations	if (there is a person named ME) and (the person P is the parent of the person ME and is the sibling of the man M) then (the man M is the uncle of the person ME).
Medical relations	if (the person P is the uncle of the patient PA) then (the person P is closely related to the patient PA).
Disease - symptoms	if (the patient PA presents with the symptom S) and (there is a disease named C that causes the symptom S) then (the patient PA may have the disease C).
Recommendations	if (the patient PA may have the neurological disease C) and (the person R is closely related to the patient PA) and (the person R suffers from the neurological disease C) and (there is a brain scan named B) then (the brain scan B is recommended for the patient PA).

Explaining the reasoning

More examples of facts

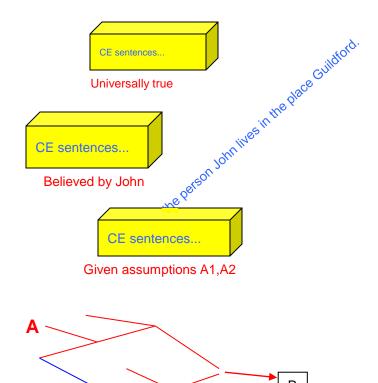
engineering	the oscillator osc2 connects to the filter f1.	
planning	the task distribute_supplies is achieved after the task cross_bridge and has 8 as earliest start time.it is false that the water truck #10 is located at the bridge BR1.	
influence analysis	it is assumed that the person 'John Smith' attends the meeting m1. the meeting m1 has the activity 'smuggle whisky' as topic.	
crime data	the anti-social behaviour crime_002 is reported by the police force 'Hampshire Constabulary' and falls within the jurisdiction 'Hampshire Jurisdiction' and occurs during the month 2010-12.	
Natural Language Processing	the NATO unit known as ' BCT patrol ' finds the facility #9. the facility #9 is located in the place known as East Rashid .	

Also being researched for resource allocation, provenance, conversational interfaces, email toolkits

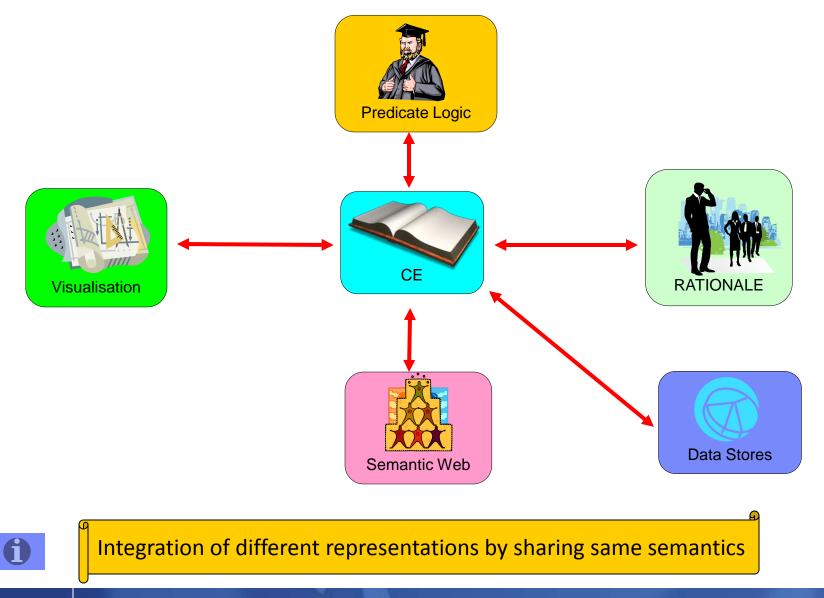
inconsistent

NOT P

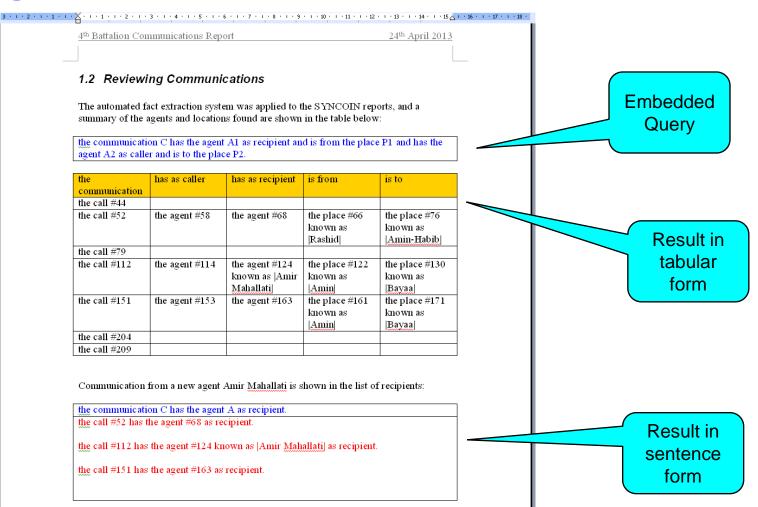
CE Reasoning Capabilities


- Reasoning with multiple views of truth:
 - truth boxes
 - hypothetical reasoning based on assumptions
 - could be used to assist disambiguation of parses?

Reasoning with uncertainty


- propagation of uncertainty values through the rationale graphs
 - used to represent uncertain parsing and uncertain analysts reasoning

Interpretation of generic logical structures


- linguistic frames
 - more abstract view of linguistic reasoning?

Formalising CE in other languages

Embedding CE into Word documents

ITA Controlled English – what does it give us?

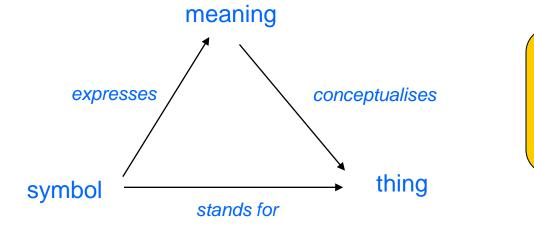
- A Controlled Natural Language, being a subset of English
 - limited syntax, but readable and writeable by humans
 - a formal semantics, so processable by machine
- Provides a means of defining semantics
 - general and domain specific
 - concepts and logical rules
- A "virtual machine" for reasoning with the semantics
 - storal, retrieval, querying
 - inference, simple and more complex

More than just a language

 We are aiming to use ITA Controlled English as pervasively as possible

But does need extending

2011-2013: Building the ideas for fact extraction, NL processing and reasoning

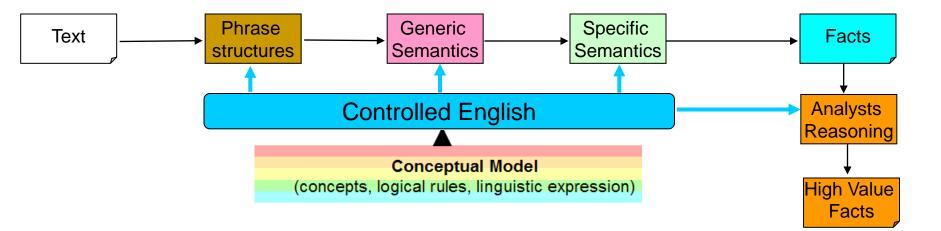

Fact Extraction using Controlled Natural Language

As the target of the NL processing

- facts in documents can be used for further reasoning
- As a means of describing the NL processing
 - to allow the user to understand the linguistic processing
 - to help configure NL tooling to the user's specific domain

Conceptual Model(s)

Meta Model	Concept, Entity Concept, Relation Concept, Conceptual Model	belongs to, has as domain
Semiotic Triangle	Thing, Meaning, Symbol	stands for, expresses
General	Agent, Spatial Entity, Temporal Entity, Situation, Container	has as agent role, is contained in
Linguistic	Sentence, Phrase, Word, Noun, Linguistic Category, Linguistic Frame	has as dependent, is parsed from
ACM	Place, Church, Person, Village, IED, Facility,	is located in


"Our" Semiotic Triangle, based on the original [Ogden, C. K. and Richards, I. A. (1923).]

Want a common model of

language in Controlled English

Logical flow of information

- Phrase structures, based upon upon a conceptual model of linguistics
- Generic semantics, based on a model of situations and agents with roles
- Specific semantics based, upon a domain conceptual model

IEM

Making our "intuitions about language" accessible

"Nouns stand for things"

```
if (there is a noun phrase named PH)
```

then

(the noun phrase PH stands for the thing T).

"Nouns tells us what type of thing"

```
if ( the noun phrase NP has the noun N as head and stands for the thing T ) and
  ( the noun N expresses the concept C )
then
  ( the thing T is a C ).
```

"the call was monitored"

there is a communication named #26.

Verbs refer to "situations"

- A situation is "something happening in the world":
 - an event, action, state (from verb phrases)
 - things (from noun phrases)
 - roles that these things play in the situation (from phrase structure)
 - location, time (from prepositional phrases).

For example:

there is a communications monitoring situation named #39 that has the call #15 as patient role and has the thing #17 as source role and has the thing #27 as destination role. Using VerbNet

IBM

Domain Semantics

e.g modelling "Communications"

 Reports speak about monitoring communications between people together with the things that were said

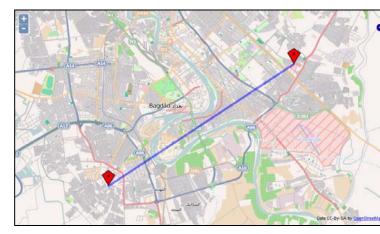
conceptualise

a "communication" C that has the agent A as "caller" and has the agent B as "recipient" and has the value D as "date" and has the value T as "time" and has the value V1 as "caller utterance" and has the value V2 as "recipient utterance" and "is from" the place FROM and "is to" the place TO.

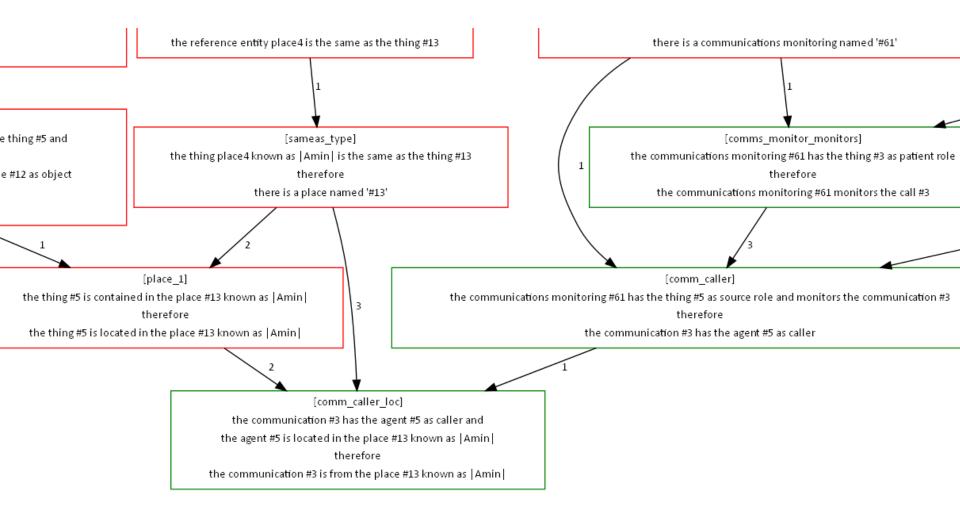
Domain intuitions

"the thing being 'done to' in a communications monitoring is a communication"

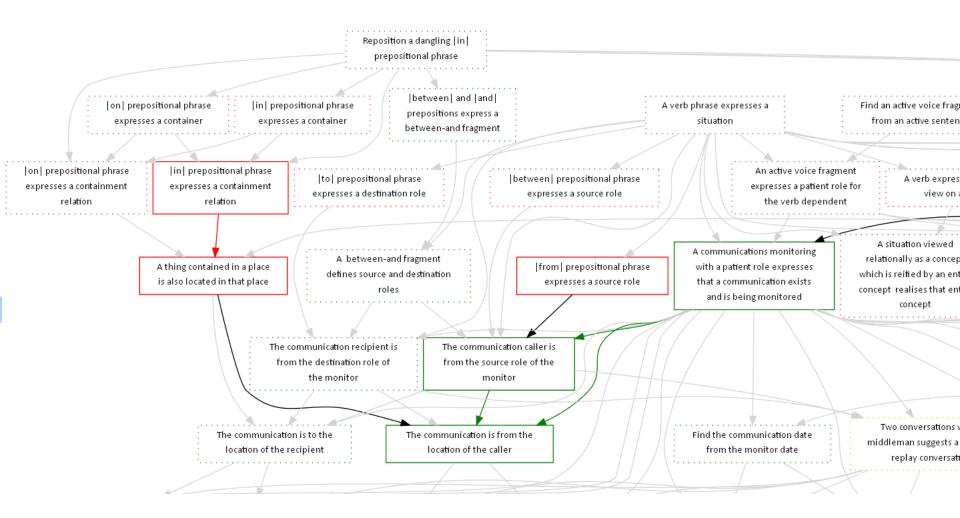
if (the situation S is a communications monitoring situation and has the thing T as patient role) then


(the communications monitoring S monitors the communication T).

"the communication comes from the place where the caller is"


if (the communication C has the agent A as caller) and (the agent A is located in the place P) then

(the communication C is from the place P).


No mention of syntax or phrase structure, you don't need to be a linguist!

Rationale shows the steps leading to a fact

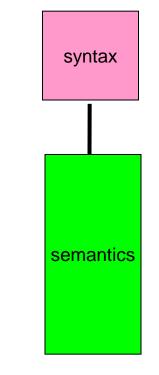
Rationale for facts extracted

"Linguistic Frames" for capturing syntax and semantics

there is a linguistic frame named np3 that has 'a person' as example and

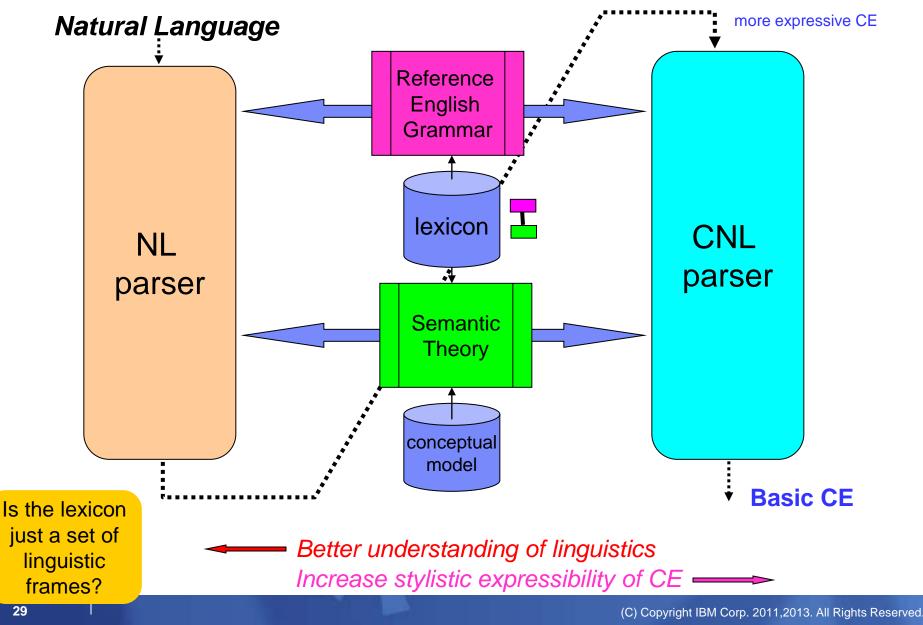
defines the noun phrase NP and

has the sequence


(the determiner DET and the noun COMMON) as syntactic pattern and

has the statement that

(the noun COMMON expresses the entity concept EC) as preconditions and

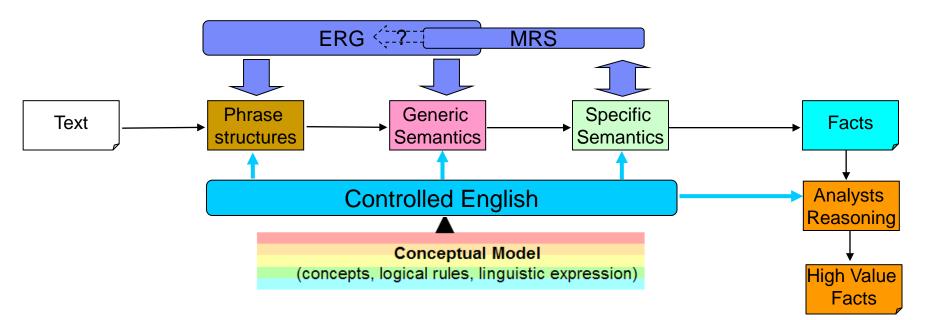

has the statement that

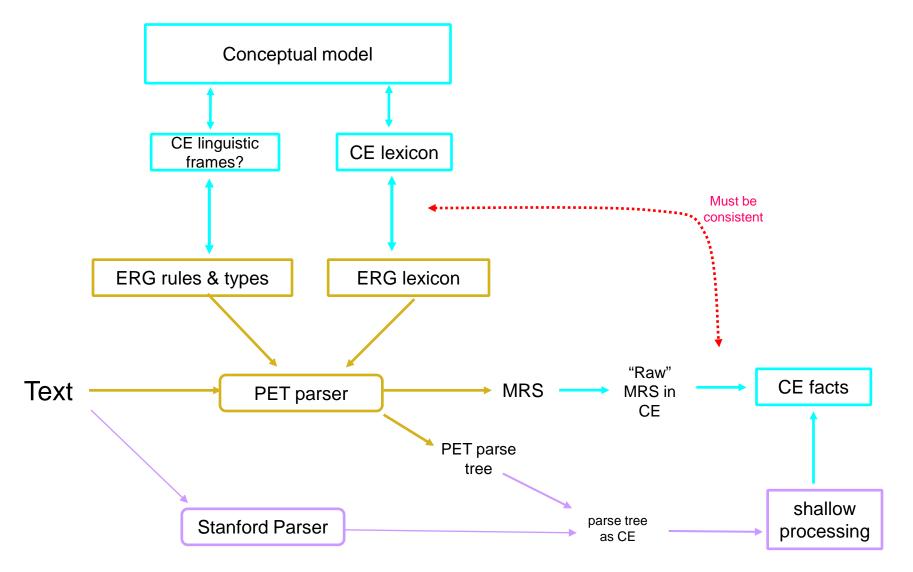
(the noun phrase NP stands for the thing X) and(the thing X is an EC)as semantic statement.

We have used this for extending the syntax of CE

Converging NL and CNL parsers

2013-2015: Objectives

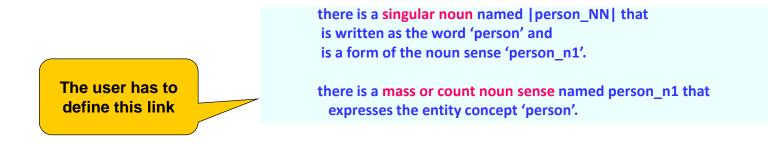

- Integration to DELPH-IN linguistic resources to provide better fact extraction
 - Linking to our CE-based architecture
 - "Deeper semantics": integrate general semantics with domain semantics
 - Expressing grammatical knowledge in CE
- Extension of Controlled English for greater expressiveness
 - learning to build a CNL from understanding NL
- Improved reasoning capabilities
 - constraints
 - assumptions and hypotheses


Linking to the CE-based architecture

Linking to the CE-based Functional Architecture

- Use the ERG to parse sentences and provide the phrase structure
- Use MRS to express generic semantics
- Integrate the the domain semantics in the conceptual model, MRS and generic semantics
- Feedback domain semantics (via MRS) to affect the parser?

Integration of ERG and CE ?


Tasks for integrating Controlled English and the ERG

- adding domain specific words to the lexicon
- generating the parse tree
 - for applications that work off a parse tree
- representing grammar rules
 - for updating domain specific rules
 - for understanding the linguistic reasoning
- integrating MRS and domain semantics
 - for output of CE facts
 - guiding the parsing rules by domain semantics?
- determining rationale for a specific linguistic conclusion
 - to review the reasons for an important conclusion

All of this must be "understandable" and in CE

Integrating to the lexicon

Lexicon in CE

Translation principles:

- An entry is equivalent to a CE word sense
- Word senses are subclassed into a hierarchy of CE generic subtypes with specific ENTRYs at the leaf nodes.
- The orthography is represented a word (simple or compound)
- The word sense expresses an entity concept in the conceptual model, defined by the user

Grammar rules

Phrase "the man (20)"

```
(137 np_frg_c 0 0 3 [root_inffrag]
(122 hdn-np_app-r-pr_c 0 0 3
(50 sp-hd_n_c 0 0 2
(16 the_1/d_-_the_le -0.8038 0 1 []
(1 "the" 0 0 1 <0:1>))
(34 n_ms-cnt_ilr 0 1 2
(23 man1/n_-_mc_le 0.1576 1 2 []
(2 "man" 0 1 2 <1:2>))))
(90 hdn_bnp-num_c 0 2 3
(86 hdn_np-num_c 0 2 3
(86 hdn_np-num_c 0 2 3
(80 w_lparen_plr 0 2 3 [w_lparen_plr]
(32 twenty_num/aj_-_i-crd-two_le 0 2 3
[w_rparen_plr w_lparen_plr]
(3 "(20)" 0 2 3 <2:3>)))))))
```

the head phrase **#p_137** has the nominal head nominal phrase phrase **#p_122** as head.

the nominal head nominal phrase phrase #p_122 has the determiner phrase #p_50 as head and has the adjective phrase #p_90 as dependent.

the determiner phrase #p_50 has the determiner |the_DT| as head and has the noun phrase #p_34 as dependent.

the noun phrase **#p_34** has the noun |man_NNS| as head.

the adjective phrase **#p_90** has the adjective phrase **#p_86** as head.

the adjective phrase **#p_86** has the adjective phrase **#p_80** as head.

the adjective phrase **#p_80** has the adjective phrase **#p_77** as head.

the adjective phrase #p_77 has the adjective '|(20)_JJ|' as head.

the noun [man_NNS] is a plural noun and has 'n_-_mc_le' as erg type.

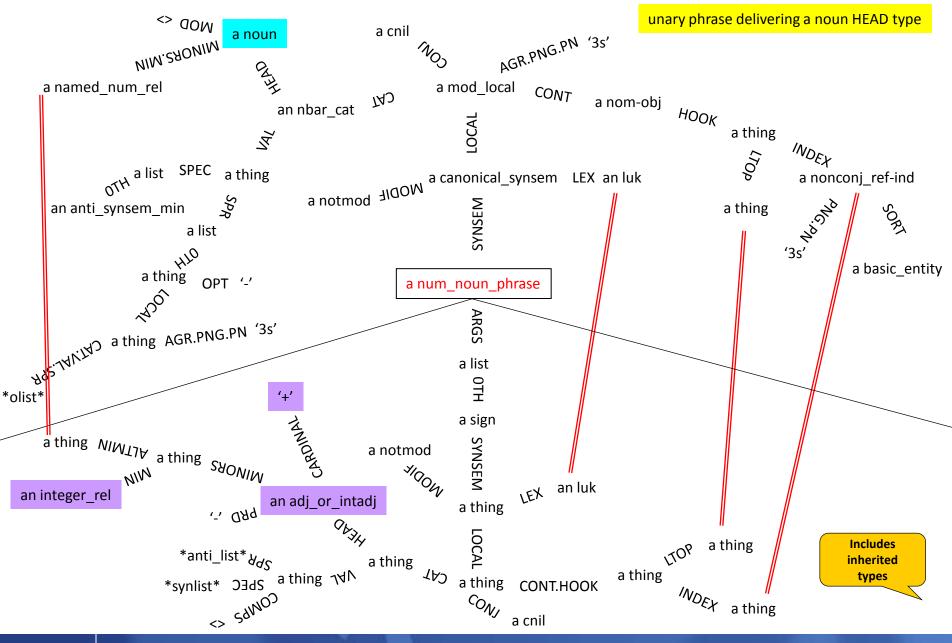
the noun phrase **#p_34** is a head phrase and has 'n_ms-cnt_ilr' as erg type.

the determiner phrase #p_50 is a specifier head phrase and has 'sp-hd_n_c' as erg type.

the adjective phrase #p_77 is a head phrase and has 'w_rparen_plr' as erg type and has the thing w_lparen_plr as feature.

the adjective phrase #p_80 is a head phrase and has 'w_lparen_plr' as erg type.

the adjective phrase #p_86 is a head phrase and has 'hdn_np-num_c' as erg type.


the adjective phrase #p_90 is a head phrase and has 'hdn_bnp-num_c' as erg type.

Parse tree in CE tabular form

he head phrase #p_137' that						
has as head	the nominal head nominal phrase phrase '#p_122' that					
	has as head	the specifier head p. that	hrase '#p_50'			
		has as head		the determiner ' <mark> the_DT</mark> '		
		and has as depende		the head phrase '#p_34' that		
				has as head	the plural noun ' ma	an_NNSI'
				and has as erg type		
		and has as erg type		p- <u>hd_n_c</u>		
	and has as dependent	the head phrase '#p_90' that				
		has as head	the head phrase '#p_86' that			
			has as head	the head phrase '#p_80' that		
				has as head	the head phrase '#p_77' that	
					has as head	the adjective ' (20)_JJ '
					and has as erg type	w_rparen_ph
					and has as feature	the thing w_lparen_plr
				and has as erg type	has as erg type wilparen plr	
			and has as erg ty	rpe hdn_np-num_c	hda_ap-aum_a	
		and has as erg type	hdn_bnp-num_c			

IBM

SWG Strategy – Emerging Technology Services, Hursley

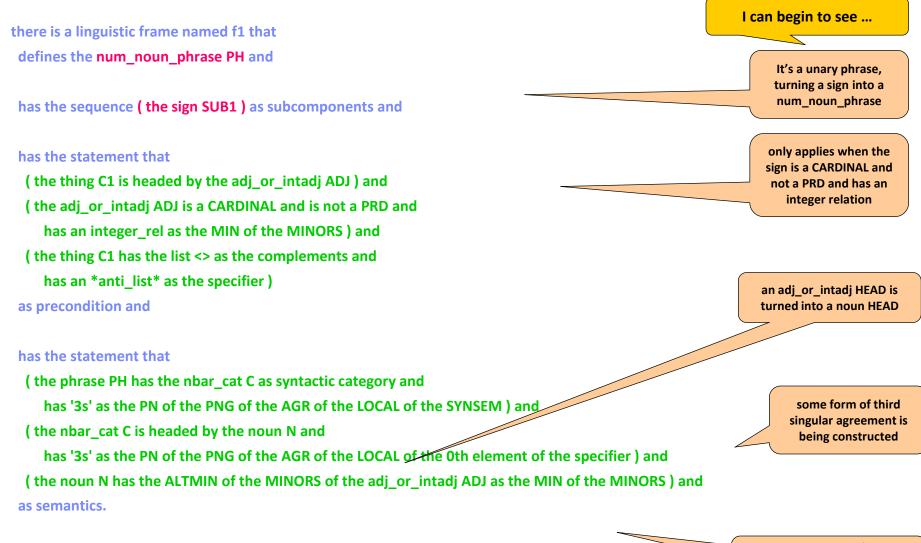
Intuition about ERG phrase rules

"Its all about combining substructures into superstructures"

there is a linguistic frame named f1 that defines the PHRASETYPE PH and

has the sequence (the sign SUB1, the sign SUB2...) as subcomponents and

has the statement that (the sign SUB1 has ...) and (the sign SUB2 has ...) as precondition and

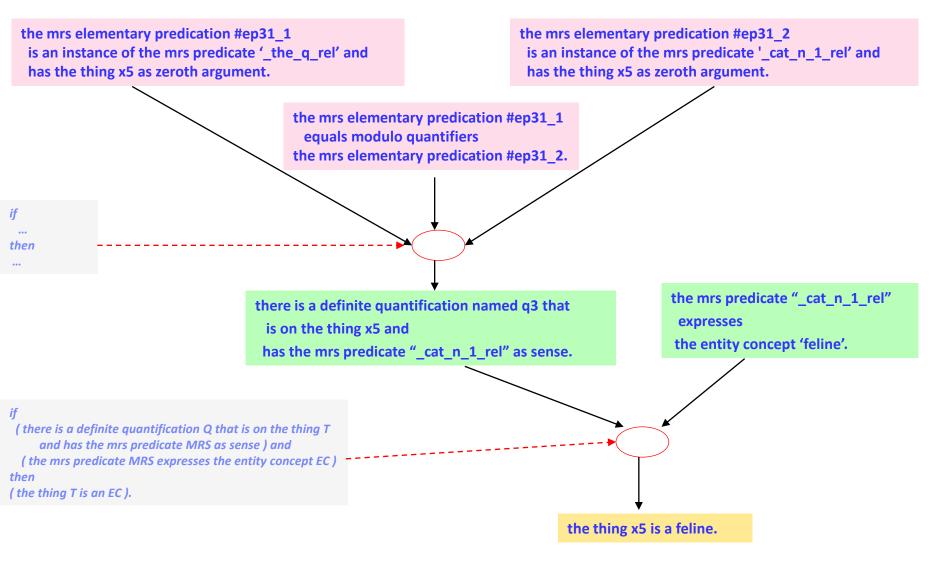

has the statement that (the phrase PH has ...) as semantics.

unification

Possible linguistic frame for num_noun_phrase

a relation is passed from the sign to the phrase via MIN and ALTMIN ??

Integrating MRS and domain semantics


Three stage approach to integrating MRS and CE

1. Generate a raw representation of :

- 1. the elementary predications (EPs) as objects with predicate and arguments
- 2. the scope information between EPs
- 2. Extract intermediate, but generic, concepts describing the raw MRS:
 - 1. patterns of quantification
- 3. Turn the raw and intermediate representation into domain specific CE facts:
 - 1. using the links between the predicate and the CE concept.
 - 2. taking account of selectional restrictions?
 - 3. ...

Three level example "the cat"

Other simple rules for turning MRS into domain concepts

adjectives

if

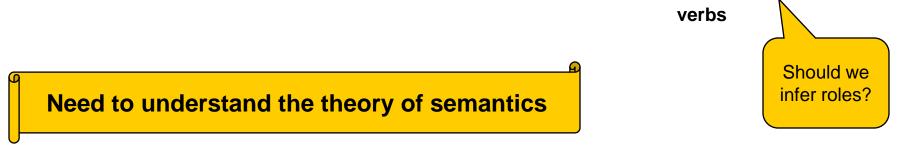
(the mrs elementary predication P is an instance of the mrs predicate MRS and has the situation S as zeroth argument and has the thing T as first argument) and (the mrs predicate MRS expresses the entity concept EC) then (the thing T is an EC).

if

(the mrs elementary predication EP is an instance of the mrs predicate '_in_p_rel' and has the thing T as first argument and has the thing C as second argument) then

(the thing T is contained in the container C).

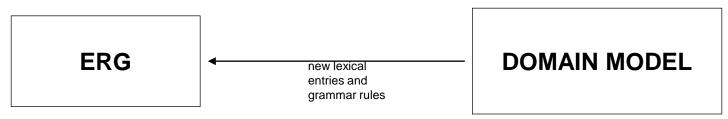
prepositions

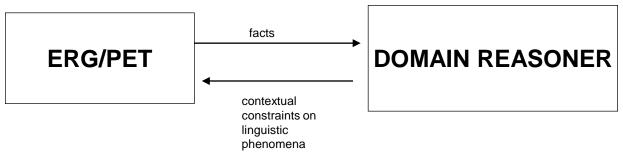

proper names

if (the mrs elementary predication P is an instance of the mrs predicate 'named_rel' and has the thing T as zeroth argument and has the value C as c argument) then (the thing T has the value C as common name).

if

(the mrs elementary predication P is an instance of the mrs predicate MRS and has the situation S as zeroth argument and has the thing T1 as first argument and has the thing T2 as second argument) and (the mrs predicate MRS expresses the relation concept RC) then


(the thing T1 RC the thing T2).

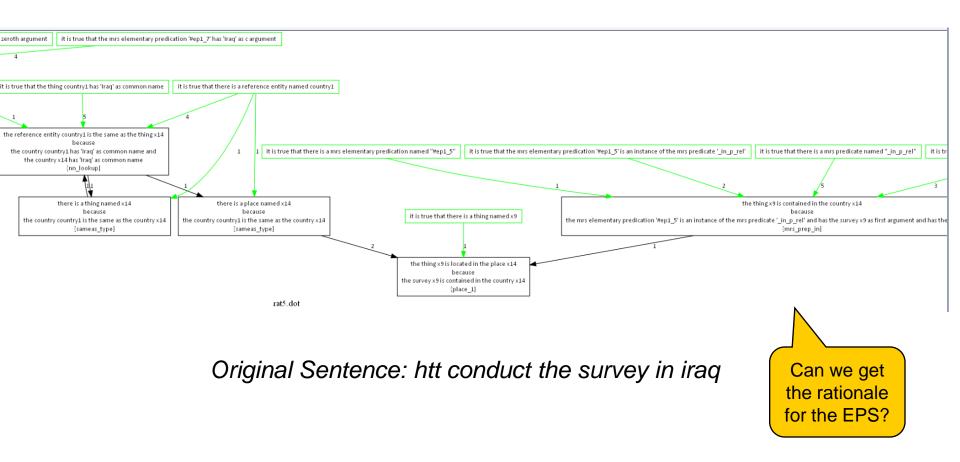

Feedback of domain reasoning to the parsing?

We want the domain to affect the parse, eg:

creating new lexical entries and grammar rules prior to parsing

But we also want arbitrary domain reasoning to affect the parse <u>at runtime</u>

Could this:


- rule out inconsistent parses
- provide disambiguations, and dialog context?

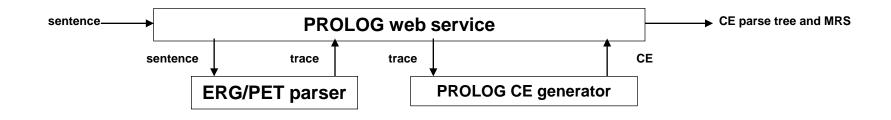
IBM

Rationale

Rationale for the semantic reasoning

the survey x9 is located in the country x14 known as Iraq.

Physical Integration


Is there a better

way?

Avoids the long

startup

Running ERG under PET

PET is run under Linux (DEBIAN) in an ORACLE VirtualBox image

- run with the flags:
 - -verbose=3 -mrs -nsolutions english
- output is in the form of a text trace, which must be "scraped" to obtain the data
- A Prolog program provides a web service for parsing sentences and turning the result into CE
 - On initialisation, the program:
 - starts PET as a process, with an input and output pipe
 - On request for a sentence to be parsed, the program:
 - puts the sentence into the input pipe and grabs the output from the output pipe
 - parses and analyses the output into CE
 - returns the CE as the result of the web service call
- Aiming to integrate to our CE Store

Objectives of research

- To better understand the complexities of natural language, to link to the external NL research community and to increase our capabilities
- To offer common models of language processing to cover a range of techniques
- To extend the research in semantics as applied to linguistic processing and to allow guidance of language parsing via domain models
- To provide better tools for allowing users to configure NL processing and to integrate fact extraction and reasoning to generate high-value information

Some questions

- Is this of any interest?
- How do I get the PET system better integrated as a service?
 - or should I use ACE?
- How do we link between phrases and entities in the MRS?
- How do we get the rationale?
- How do we feedback domain semantics to the parsing?

mottdh@googlemail.com

References

- Mott, D., Giammanco, C., Dorneich, M.C., Patel, J., & Braines, D. (2010). "Hybrid Rationale and Controlled Natural Language for Shared Understanding". *Proceedings of the 6th Knowledge Systems for Coalition Operations*, Vancouver, Canada.
- Mott, D. (2010). Summary of Controlled English, ITACS, https://www.usukita.org/papers/5658/details.html.
- Mott, D., Braines, D., Poteet, S., Kao, A., and Xue, P. (2012). Controlled Natural Language to Facilitate Information Extraction. In Proceedings of the Sixth Annual Conference of the International Technology Alliance, London, UK.
- Xue, P., Poteet, S., Kao, A., Mott, D., Braines, D., (2013) Constructing Controlled English for Both Human Usage and Machine Processing, RuleML 2013