Bootstrapping a stochastic parse selection model via SVD-mapped semantics

DELPH-IN Summit 2013

Glenn Slayden
University of Washington

Tamping down the fan-out

- Mitigating fan-out is critical at every stage of DELPH-IN processing scenarios
- Especially problematic is MT, where parser results are passed on as inputs to transfer and then yet further to generation
- Stochastic parse (and realization) selection models become absolutely crucial as a grammar gains competency
- Maximum Entropy parse selection is a mature, core DELPH-IN technology, available in all processing engines

Corpora for discriminative modeling

- DELPH-IN parse selection models are trained to discriminate between the desired vs. undesired derivations in a parse result
- Building these models requires a corpus of parse results annotated for the desired parse
- Developing these training resources is very laborintensive
- Low-resource languages may not be able to support this type of sustained development effort

Selected Prior work

- Dridan \& Oepen 2011. Parser evaluation using EDM
- decomposing the MRS into elementary 'triples'
- not concerned with setting triples in correspondence between disjoint MRSes
- Fujuta, Bond, Oepen \& Tanaka 2010. Exploiting semantic information for HPSG parse selection

Motivation

- High-quality translation pairs are easier to obtain (and in volume) than discriminative derivation forests
- For these surface translation pairs, respective DELPH-IN grammars should produce similar semantics
- modulo predicate names
- as opposed to similar derivation trees
- Because each language independently pairs exactly one MRS with each derivation, MRS correspondence establishes one-to-one correspondence between bilingual derivations

Semantic mediation

- This means that a rich and mature syntactic parse selection model from L1 can be used to estimate syntactic training data for L2
- The estimation is mediated by semantics
- Given approximated L2 discriminations, a MaxEnt parse selection model is built for L2 in the normal way
- TADM modeling toolkit (Malouf et al. 2005)

What is this semantic mediation?

- What's needed is a robust, deterministic, grammar-agnostic metric of MRS similarity
- Since MRSes are formally DAGs, this is nontrivial
- graph edit distance?
- tree similarity? (but MRS is not a tree)
- tree kernels? (but MRS is not a tree)

Desiderata for an isomorphism metric

- Proportional to the structural isomorphism between (abstract, arbitrary) directed graphs
- do the MRSes have the same "shape?"
- i.e. a similar structural signature as established by the occurrence of non-singleton variables
- Determinism guarantees
- does the metric give an interpretable result for every MRS?
- Analytical power
- does the metric maximize the use of available information?
- can formally-defined aspects of MRS be fully exploited?
- Ignore grammar-specific types and predicates?

Singular value decomposition (SVD)

- SVD is a two-mode factor analysis which simultaneously achieves:
- noise attenuation
- redundancy detection (Schutze, 1992)
- a similarity retrieval metric (Kontostathis and Pottenger, 2002)
- The well-known NLP application is in information retrieval (IR)
- terms (rows) by documents (columns)

SVD definition

$$
\begin{aligned}
& A_{m \times n}=U_{m \times d} \Sigma_{d \times d}\left(V_{n \times d}\right)^{T} \\
& \quad d=\min (m, n)
\end{aligned}
$$

A : (input matrix)
m : (columns) 〈MRS, role, relation〉
n : (rows) roles $\cup\langle M R S$, variable \rangle

MRS-SVD embedding

- How to embed MRS—formally a DAG—into matrix form?
- MRS has two structural levels:
- relations, which group
- role/variable assignments
- Solution: use special rows to tie together the role/variable assignments for each relation

	e:00-LTOP	e:00-XARG	e:00-INDEX	e:RO-LBL	e:R0-ARG0	e:R0-RSTR	e:RO-BODY	e:R1-LBL	e:R1-A	ARGO	e:R2-LBL	e:F
LTOP	1											
XARG		1										
$\begin{array}{\|l\|} \text { INDEX } \\ \text { LBL } \end{array}$			1									
				1				1			1	
ARG0					1					1		
RSTR						1						
$\begin{aligned} & B O D Y \\ & A R G 1 \end{aligned}$							1					
ARG2												
HARG												
LARG												
x1-en		1			1					1		
$\left\lvert\, \begin{aligned} & \text { h2-en } \\ & \text { h4-en } \end{aligned}\right.$						1						
								1				
h5-en	1										1	
			1									
h0-th												
x1-th												
h3-th												
$\begin{aligned} & \text { h5-th } \\ & \text { e6-th } \end{aligned}$	http	//WWW	compu	utation	-sem	ntics.	com/s	-align	/m	S-S	d.pn	
เด็ก กิน ข้าว				The child is	is eating.							
			RS 3 \})		prop, TENSE _q_rel(x1 \{ d_n_1_rel(x v_1_rel(e6) 4 \}	pres, MOO PERS 3, NUM 1) , x1, p7) \}	D indicative, M sg, IND + \},	$\text { PROG }+, \mathrm{PI}$ h2, h33)	$\text { F-\} }$		$\begin{aligned} & \text { S SV } \\ & \text { eeddi } \end{aligned}$	

Test scenario

- ERG (Flickinger 2000) trunk 13169
- Grammar of Thai based on Matrix (Bender et al. 2002)
- 187 Sentences parsed by both grammars
- pair-up one MRS from each grammar; embed both in a single matrix
- Reduce this matrix with SVD; see if the result says anything interesting about the isomorphism of the disjoint MRSes

Investigations

- What is the formal mathematical status of the MRS embedding proposed here?
- Are the singular values predictive?
- initial excitement over w[0] now turns out to be a null result
- Excellent suggestions of Woodley and Guy (thanks!):
- consider the distribution of singular values
- compress each MRS individually first, then compare singular value vectors
- Further work on how to aggregate the multiple column vectors for a relation to obtain relation alignment
- much more...

latest results (1:47pm)

- Now studying 8 sentences
- http://www.computational-semantics.com/new-align/new-align.html
- เขา ไป ซื้อ ดอกไม้ ที่ ตลาด และ ไป เยี่ยม เพื่อน
- "She bought flowers at the market and went to visit a friend."
- see id 'th219441' (19 Thai parses) (select Thai \#15?)

study subset

n- th	n- en			Maxent
$\mathbf{6}$	$\mathbf{1}$	The man can go.	root_strict	2.608923
$\mathbf{6}$	$\mathbf{1}$	The man went.	root_strict	0.813792
19	$\mathbf{6}$	She bought flowers at the market and went to visit a friend.	root_strict	5.362326
$\mathbf{2}$	$\mathbf{7}$	Give way to passengers.	root_strict	2.582978
$\mathbf{2}$	$\mathbf{6}$	The cats and dogs are chasing cars	root_strict	3.439535
$\mathbf{1 0}$	$\mathbf{2}$	The servant has returned.	root_strict	$\mathbf{4 . 9 3 5 6 3 3}$
$\mathbf{2}$	$\mathbf{1}$	He is reading a book.	root_strict	6.742530
$\mathbf{4}$	$\mathbf{2}$	I'm not the doctor.	root_informal	$\mathbf{7 . 2 0 3 0 2 8}$

ERG

```
h8 e6 { SF prop, TENSE pres, MOOD indicative, PROG -, PERF - }
{ h0 : pron_rel(x1 {PERS 1, NUM sg, PRONTYPE std_pron })
    h2] : pronoun_q_rel(\x1, h3, h4)
    h5:_be_v_id_rel(e6, x1, x7] { PERS 3, NUM sg, IND + })
    h8 : neg_rel(e9 { SF prop, TENSE untensed, MOOD indicative, PROG -, PERF - }, h10)
    h11:_the_q_rel(x7, h12, h13)
```



```
{ h3 qeq h0, h10 qeq h5, h12 qeq h14}
```


I'm not the doctor - ผม ไม่ ได้ เป็น หมอ

```
h13 e15 { SF prop }
{ h0 : pron_rel(x1] { PERS 1, NUM sg, GEND m, SPECI + })
    h2) : exist_q_rel(x1, h3, h4)
    [55: neg_rel(e6, n7)
    h88:_can_v_rel(e9, x1, x10 { PERS 3 })
    h11):_be_v_id_rel(e12, x1, x10)
    h13: _and_c_rel(h5, h14, e15, e9, e12)
    h16:_doctor_n_1_rel(x10)
    h17: exist_q_rel( x10, h18, h19) }
{ h3 qeq h0, h7 qeq h8, h18 qeq h16 }
```


[h5 e 5 \{ SF prop \}

\{ h0 : pron_rel(x1] \{PERS 1, NUM sg, GEND m, SPECI + \})
h2 : exist_q_rel(x1, h3, h4)
n5: neg_rel(e6, n7)
h88:_can_v_rel(e9, x1, x10 \{ PERS 3 \})
h11: :_be_v_id_rel(e12, x1, x10)
h13: and_c_rel(h8, h14, e15, e9, e12)
h16:_doctor_n_1_rel((x10)
h17 : exist_q_rel(x10, h18, h19) \}
\{ h3 qeq h0, h7 qeq h13, h18 qeq h16 \}

3 [h5 e9 \{ TENSE past, SF prop \}
\{ hol : pron_rel(ख1 \{ PERS 1, NUM sg, GEND m, SPECI + \})

[h5: neg_rel($[$ e6, $[$ h7)
h8):_be_v_id_rel([09, ख1, $\times 10$ \{ PERS 3 \})
h111:_doctor_n_1_rel(区10)
[h12): exist_q_rel($\times 10$, [h13, [h14 $)\}$


```
[n5)e15 {SF prop }
{ [h0) : pron_rel(ख1 { PERS 1, NUM sg, GEND m, SPECl + })
[n2: exist_q_rel(团, [n3, [n4)
n5: neg_rel([66, [n7)
h8: _can_v_rel([09, x1, x10 { PERS 3 })
h11:__be_v_id_rel([12, ख1, \10)
h13):_and_c_rel([h8, [h14, e15, e9, e12)
h16:_doctor_n_1_rel( x10)
h17: exist_q_rel(x10, h16, [10) }
{[h3] qeq [h0, [n7 qeq[h13, [h18 qeq [h16}}
```


Alignment \# 3 from previous slide

role accuracy:
1.0000
const-type precision: 1.0000 const-type recall: 1.0000 const-value accuracy: 0.9091 var-subtype accuracy: 0.9333 variable precision: 0.5625 variable recall: 0.6000

[0] T230338-3 00 LTOP	h5	[0] E230338-1 00 LTOP	h8
[0] T230338-3 00 XARG	i15	[0] E230338-1 00 XARG	x1
[0] T230338-3 00 INDEX	e9	[0] E230338-1 00 INDEX	e6
[1] T230338-3 e9 TENSE	past	[8] E230338-1 e9 TENSE	untensed
[1] T230338-3 e9 SF	prop	[8] E230338-1 e9 SF	prop
[2] T230338-3 RO PRED	pron_rel	[3] E230338-1 RO PRED	pron_rel
[2] T230338-3 RO LBL	h0	[7] E230338-1 R3 LBL	h8
[2] T230338-3 RO ARGO	x1	[9] E230338-1 R4 ARGO	x7
[3] T230338-3 x1 PERS	1	[1] E230338-1 x1 PERS	1
[3] T230338-3 x1 NUM	sg	[6] E230338-1 x7 NUM	sg
[4] T230338-3 R1 PRED	exist_q_rel	[4] E230338-1 R1 PRED	exist_q_rel
[4] T230338-3 R1 LBL	h2	[9] E230338-1 R4 LBL	h11
[4] T230338-3 R1 ARG0	x1	[4] E230338-1 R1 ARGO	x1
[4] T230338-3 R1 RSTR	h3	[4] E230338-1 R1 RSTR	h3
[4] T230338-3 R1 BODY	h4	[4] E230338-1 R1 BODY	h4
[5] T230338-3 R2 PRED	neg_rel	[7] E230338-1 R3 PRED	neg_rel
[5] T230338-3 R2 LBL	h5	[7] E230338-1 R3 LBL	h8
[5] T230338-3 R2 ARG0	e6	[7] E230338-1 R3 ARGO	e9
[5] T230338-3 R2 ARG1	h7	[7] E230338-1 R3 ARG1	h10
[6] T230338-3 R3 PRED	be_v_id	[5] E230338-1 R2 PRED	be_v_id
[6] T230338-3 R3 LBL	h8	[7] E230338-1 R3 LBL	h8
[6] T230338-3 R3 ARG0	e9	[5] E230338-1 R2 ARGO	e6
[6] T230338-3 R3 ARG1	x1	[7] E230338-1 R3 ARG1	h10
[6] T230338-3 R3 ARG2	$\times 10$	[5] E230338-1 R2 ARG2	x7
[7] T230338-3 x10 PERS	3	[6] E230338-1 x7 PERS	3
[8] T230338-3 R4 PRED	doctor_n_1	[10] E230338-1 R5 PRED	doctor_n_1
[8] T230338-3 R4 LBL	h11	[3] E230338-1 RO LBL	ho
[8] T230338-3 R4 ARG0	x10	[4] E230338-1 R1 ARGO	x1
[9] T230338-3 R5 PRED	exist_q_rel	[4] E230338-1 R1 PRED	exist_q_rel
[9] T230338-3 R5 LBL	h12	[9] E230338-1 R4 LBL	h11
[9] T230338-3 R5 ARG0	x10	[9] E230338-1 R4 ARGO	x7
[9] T230338-3 R5 RSTR	h13	[9] E230338-1 R4 RSTR	h12
[9] T230338-3 R5 BODY	h14	[9] E230338-1 R4 BODY	h13
[10] T230338-3 QO HARG	h3	[11] E230338-1 QO HARG	h3
[10] T230338-3 Q0 LARG	h0	[11] E230338-1 QO LARG	h0
[11] T230338-3 Q1 HARG	h7	[12] E230338-1 Q1 HARG	h10
[11] T230338-3 Q1 LARG	h8	[11] E230338-1 QO LARG	h0
[12] T230338-3 Q2 HARG	h13	[12] E230338-1 Q1 HARG	h10
[12] T230338-3 Q2 LARG	h11	[13] E230338-1 Q2 LARG	h14

Evaluation

- This technique quickly outpaced the ability of the Thai grammar to challenge its merits.
- The limited competency of the Thai grammar means it generates few derivations for the sentences it does parse.
- Thu, evaluation of this work became hampered by insufficient stress.
- This is a good thing; SVD shows promise for bootstrapping complex models.

Applicability

- This work is mostly applicable to grammars that have significantly developed past 'toy' status
- because off-the-shelf 'Matrix' grammars constrain ambiguity pretty well
- Ambiguity-generating extensions in the Thai grammar include:
- verb serialization which is handled as asyndetic coordination
- subject or pronoun drop

Future work

- Extend the Thai grammar so that this bootstrapping method can face realistic challenges
- Evaluate alternative VSM distance interpretations
- Better understanding of the linear algebra which underlies this embedding

References

- Emily M Bender, Dan Flickinger and Stephan Oepen. (2002). The grammar matrix: An open-source starter-kit for the rapid development of crosslinguistically consistent broad-coverage precision grammars. In Proceedings of the 2002 workshop on Grammar engineering and evaluation-Volume 15 (pp. 1-7). Association for Computational Linguistics.
- Ann Copestake, Dan Flickinger, Carl Pollard and Ivan A. Sag. (2005). Minimal recursion semantics: An introduction. Research on Language and Computation, 3(2-3), 281-332.
- Rebecca Dridan and Stephan Oepen. (2011). Parser evaluation using elementary dependency matching. In Proceedings of the 12th International Conference on Parsing Technologies (pp. 225-230). Association for Computational Linguistics.
- Dan Flickinger. (2000). On building a more efficient grammar by exploiting types. Natural Language Engineering, 6(1), 15-28.
- S. Fujita, Francis Bond, Stephan Oepen and T. Tanaka. (2010). Exploiting semantic information for HPSG parse selection. Research on Language and Computation, 8(1), 1-22.

References, cont.

- Gene H. Golub and Charles F. Van Loan. (1996). Matrix computations (3rd ed.). Johns Hopkins University Press, Baltimore, MD, USA.
- April Kontostathis and William M. Pottenger. (2002). Transitivity and the co-occurrence relation in LSI. Technical Report LU-CSE-02-005, Lehigh University.
- Stephan Oepen, Dan Flickinger, Kristina Toutanova, and Christoper D. Manning. (2004). LinGO Redwoods: A Rich and Dynamic Treebank for HPSG. Research on Language and Computation 2(4):575-596.
- Stephan Oepen and J. T. Lønning. (2006). Discriminant-based MRS banking. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006).
- Hinrich Schütze. (1992). Dimensions of meaning. In Proceedings of Supercomputing.
- Glenn Slayden. (2010) Array TFS storage for unification grammars. University of Washington Master's Thesis, 2010.
- Kristina Toutanova and Christopher D. Manning (2002). Feature Selection for a Rich HPSG Grammar Using Decision Trees. In Proceedings of the Sixth Conference on Natural Language Learning (CoNLL 2002), Taipei, Taiwan.

Thank you!

