Bootstrapping a stochastic parse selection model via SVD-mapped semantics

DELPH-IN Summit 2013

St. Wendel, Germany

Tamping down the fan-out

- Mitigating fan-out is critical at every stage of DELPH-IN processing scenarios
- Especially problematic is MT, where parser results are passed on as inputs to transfer and then yet further to generation
- Stochastic parse (and realization) selection models become absolutely crucial as a grammar gains competency
- Maximum Entropy parse selection is a mature, core DELPH-IN technology, available in all processing engines

Corpora for discriminative modeling

- DELPH-IN parse selection models are trained to discriminate between the desired *vs.* undesired derivations in a parse result
- Building these models requires a corpus of parse results annotated for the desired parse
- Developing these training resources is very laborintensive
- Low-resource languages may not be able to support this type of sustained development effort

Selected Prior work

- Dridan & Oepen 2011. Parser evaluation using EDM
 - decomposing the MRS into elementary 'triples'
 - not concerned with setting triples in correspondence between disjoint MRSes
- Fujuta, Bond, Oepen & Tanaka 2010.
 Exploiting semantic information for HPSG parse selection

Motivation

- High-quality translation pairs are easier to obtain (and in volume) than discriminative derivation forests
- For these surface translation pairs, respective DELPH-IN grammars should produce similar semantics
 - modulo predicate names
 - as opposed to similar derivation trees
- Because each language independently pairs exactly one MRS with each derivation, MRS correspondence establishes one-to-one correspondence between bilingual derivations

Semantic mediation

• This means that a rich and mature *syntactic* parse selection model from L1 can be used to estimate *syntactic* training data for L2

- The estimation is mediated by *semantics*

 Given approximated L2 discriminations, a MaxEnt parse selection model is built for L2 in the normal way

– TADM modeling toolkit (Malouf et al. 2005)

What is this semantic mediation?

- What's needed is a robust, deterministic, grammar-agnostic metric of MRS similarity
- Since MRSes are formally DAGs, this is nontrivial
 - graph edit distance?
 - tree similarity? (but MRS is not a tree)
 - tree kernels? (but MRS is not a tree)

Desiderata for an isomorphism metric

- Proportional to the structural isomorphism between (abstract, arbitrary) directed graphs
 - do the MRSes have the same "shape?"
 - i.e. a similar structural signature as established by the occurrence of non-singleton variables
- Determinism guarantees
 - does the metric give an interpretable result for every MRS?
- Analytical power
 - does the metric maximize the use of available information?
 - can formally-defined aspects of MRS be fully exploited?
- Ignore grammar-specific types and predicates?

Singular value decomposition (SVD)

- SVD is a two-mode factor analysis which simultaneously achieves:
 - noise attenuation
 - redundancy detection (Schutze, 1992)
 - a similarity retrieval metric (Kontostathis and Pottenger, 2002)
- The well-known NLP application is in information retrieval (IR)

- terms (rows) by documents (columns)

SVD definition

$$A_{m \times n} = U_{m \times d} \Sigma_{d \times d} (V_{n \times d})^{T}$$

$$d = \min(m, n)$$

A: (input matrix)

m: (columns) ⟨*MRS*,*role*,*relation*⟩ *n*: (rows) *roles* ∪ ⟨*MRS*,*variable*⟩

MRS-SVD embedding

- How to embed MRS—formally a DAG—into matrix form?
- MRS has two structural levels:
 - relations, which group
 - role/variable assignments
- Solution: use *special rows* to tie together the role/variable assignments for each relation

	e:00-LTOP	e:00-XARG	e:00-INDEX	e:R0-LBL	e:R0-ARG0	e:R0-RSTR	e:R0-BODY	e:R1-LBL	e:R1-AR	G0	e:R2-LBL	e:F
LTOP	1											
XARG		1										
INDEX			1									
LBL				1				1			1	
ARG0					1					1		
RSTR						1						
BODY							1					
ARG1												
ARG2												
HARG												
LARG												
x1-en		1			1					1		
h2-en						1						
h4-en								1				
h5-en	1										1	
еб-en			1									
h0-th												
x1-th												
h3-th												
h5-th	http:	<u>//wwv</u>	v.comp	utatior	<u>ial-sem</u>	antics.	<u>com/sv</u>	<u>/d-aligr</u>	<u>ı/mrs</u>	<u>;-S</u>	vd.png	5
e6-th												
เด็ก ก็	เด็ก กิน ข้าว The child is eating.											
h5 e	e6 { SF prop } h5 e6 { SF prop, TENSE pres, MOOD indicative, PROG +, PERF - }						RF - }					
	_child_n_1			<pre>{ h0 : _the_q_rel(x1 { PERS 3, NUM sg, IND + }, h2, h3)</pre>						MRS SVD		
	: exist_q_rel(x1, h3, h4)			$h4: _child_n_1_rel(x1)$						embedding		
	h5 : _eat_v_2_rel(e6, x1) }			h5: _eat_v_1_rel(e6, x1, p7) }				e	:m	peaall	٦g	
{h3	{h3 qeq h0 } {h2 qeq h4 }											

Test scenario

- ERG (Flickinger 2000) trunk 13169
- Grammar of Thai based on Matrix (Bender et al. 2002)
- 187 Sentences parsed by both grammars
- pair-up one MRS from each grammar; embed both in a single matrix
- Reduce this matrix with SVD; see if the result says anything interesting about the isomorphism of the disjoint MRSes

Investigations

- What is the formal mathematical status of the MRS embedding proposed here?
- Are the singular values predictive?
 - initial excitement over w[0] now turns out to be a null result
- Excellent suggestions of Woodley and Guy (thanks!):
 - consider the distribution of singular values
 - compress each MRS individually first, then compare singular value vectors
- Further work on how to aggregate the multiple column vectors for a relation to obtain relation alignment
- much more...

latest results (1:47pm)

- Now studying 8 sentences
- <u>http://www.computational-</u>
 <u>semantics.com/new-align/new-align.html</u>
 - เขา ไป ซื้อ ดอกไม้ ที่ ตลาด และ ไป เยี่ยม เพื่อน
 - "She bought flowers at the market and went to visit a friend."
 - see id 'th219441' (19 Thai parses) (select Thai #15?)

study subset

n- th	n- en			Maxent
6	1	The man can go.	<pre>root_strict</pre>	2.608923
6	1	The man went.	<pre>root_strict</pre>	0.813792
19	6	She bought flowers at the market and went to visit a friend.	<pre>root_strict</pre>	5.362326
2	7	Give way to passengers.	<pre>root_strict</pre>	2.582978
2	6	The cats and dogs are chasing cars.	<pre>root_strict</pre>	3.439535
10	2	The servant has returned.	<pre>root_strict</pre>	4.935633
2	1	He is reading a book.	<pre>root_strict</pre>	6.742530
4	2	I'm not the doctor.	<pre>root_informal</pre>	7.203028

ERG

1

h8 e6 { SF prop, TENSE pres, MOOD indicative, PROG -, PERF - } { h0 : pron rel(x1 { PERS 1, NUM sg, PRONTYPE std pron }) h2: pronoun_q_rel(x1, h3, h4) h5 : _be_v_id_rel(e6, x1, x7 { PERS 3, NUM sg, IND + }) h8 : neg rel(e9 { SF prop, TENSE untensed, MOOD indicative, PROG -, PERF - }, h10) h11: the q rel(x7, h12, h13) h14: doctor n 1 rel(x7)} { h3 geg h0, h10 geg h5, h12 geg h14 }

I'm not the doctor - ผม ไม่ ได้ เป็น หมอ

	[0] T230338-3 00 LTOP	h5	[0] E230338-1 00 LTOP	h8
	[0] T230338-3 00 XARG	i15	[0] E230338-1 00 XARG	xl
	[0] T230338-3 00 INDEX	e9	[0] E230338-1 00 INDEX	e6
	[1] T230338-3 e9 TENSE	past	[8] E230338-1 e9 TENSE	untensed
	[1] T230338-3 e9 SF	prop	[8] E230338-1 e9 SF	prop
	[2] T230338-3 R0 PRED	pron rel	[3] E230338-1 R0 PRED	pron rel
	[2] T230338-3 R0 LBL	h0	[7] E230338-1 R3 LBL	h8
Alignment # 3	[2] T230338-3 R0 ARG0	xl	[9] E230338-1 R4 ARG0	x 7
from previous slide	[3] T230338-3 x1 PERS	1	[1] E230338-1 x1 PERS	1
nom previous since	[3] T230338-3 x1 NUM	sg	[6] E230338-1 x7 NUM	sg
	[4] T230338-3 R1 PRED	exist q rel	[4] E230338-1 R1 PRED	exist q rel
role accuracy: 1.0000	[4] T230338-3 R1 LBL	h2	[9] E230338-1 R4 LBL	h11
const-type precision: 1.0000	[4] T230338-3 R1 ARG0	x 1	[4] E230338-1 R1 ARG0	x 1
const-type recall: 1.0000	[4] T230338-3 R1 RSTR	h3	[4] E230338-1 R1 RSTR	h3
const-value accuracy: 0.9091	[4] T230338-3 R1 BODY	h4	[4] E230338-1 R1 BODY	h4
var-subtype accuracy: 0.9333	[5] T230338-3 R2 PRED	neg_rel	[7] E230338-1 R3 PRED	neg_rel
variable precision: 0.5625	[5] T230338-3 R2 LBL	h5	[7] E230338-1 R3 LBL	h8
variable recall: 0.6000	[5] T230338-3 R2 ARG0	e6	[7] E230338-1 R3 ARG0	e9
	[5] T230338-3 R2 ARG1	h7	[7] E230338-1 R3 ARG1	h10
	[6] T230338-3 R3 PRED	_be_v_id	[5] E230338-1 R2 PRED	_be_v_id
	[6] T230338-3 R3 LBL	h8	[7] E230338-1 R3 LBL	h8
	[6] T230338-3 R3 ARG0	e9	[5] E230338-1 R2 ARG0	e6
	[6] T230338-3 R3 ARG1	xl	[7] E230338-1 R3 ARG1	h10
	[6] T230338-3 R3 ARG2	x10	[5] E230338-1 R2 ARG2	x 7
	[7] T230338-3 x10 PERS	3	[6] E230338-1 x7 PERS	3
	[8] T230338-3 R4 PRED	_doctor_n_1	[10] E230338-1 R5 PRED	_doctor_n_1
	[8] T230338-3 R4 LBL	h11	[3] E230338-1 R0 LBL	h0
	[8] T230338-3 R4 ARG0	x10	[4] E230338-1 R1 ARG0	x1
	[9] T230338-3 R5 PRED	exist_q_rel	[4] E230338-1 R1 PRED	exist_q_rel
	[9] T230338-3 R5 LBL	h12	[9] E230338-1 R4 LBL	h11
	[9] T230338-3 R5 ARG0	x10	[9] E230338-1 R4 ARG0	x 7
	[9] T230338-3 R5 RSTR	h13	[9] E230338-1 R4 RSTR	h12
	[9] T230338-3 R5 BODY	h14	[9] E230338-1 R4 BODY	h13
	[10] T230338-3 Q0 HARG	h3	[11] E230338-1 Q0 HARG	h3
	[10] T230338-3 Q0 LARG	h0	[11] E230338-1 Q0 LARG	h0
	[11] T230338-3 Q1 HARG	h7	[12] E230338-1 Q1 HARG	h10
	[11] T230338-3 Q1 LARG	h8	[11] E230338-1 Q0 LARG	h0
	[12] T230338-3 Q2 HARG	h13	[12] E230338-1 Q1 HARG	h10
	[12] T230338-3 Q2 LARG	h11	[13] E230338-1 Q2 LARG	h14

Evaluation

- This technique quickly outpaced the ability of the Thai grammar to challenge its merits.
 - The limited competency of the Thai grammar means it generates few derivations for the sentences it does parse.
 - Thu, evaluation of this work became hampered by insufficient stress.
 - This is a good thing; SVD shows promise for bootstrapping complex models.

Applicability

- This work is mostly applicable to grammars that have significantly developed past 'toy' status
 - because off-the-shelf 'Matrix' grammars constrain ambiguity pretty well
 - Ambiguity-generating extensions in the Thai grammar include:
 - verb serialization which is handled as asyndetic coordination
 - subject or pronoun drop

Future work

- Extend the Thai grammar so that this bootstrapping method can face realistic challenges
- Evaluate alternative VSM distance interpretations
- Better understanding of the linear algebra which underlies this embedding

References

- Emily M Bender, Dan Flickinger and Stephan Oepen. (2002). The grammar matrix: An open-source starter-kit for the rapid development of cross-linguistically consistent broad-coverage precision grammars. In *Proceedings of the 2002 workshop on Grammar engineering and evaluation-Volume 15* (pp. 1-7). Association for Computational Linguistics.
- Ann Copestake, Dan Flickinger, Carl Pollard and Ivan A. Sag. (2005). Minimal recursion semantics: An introduction. *Research on Language and Computation*, 3(2-3), 281-332.
- Rebecca Dridan and Stephan Oepen. (2011). Parser evaluation using elementary dependency matching. In *Proceedings of the 12th International Conference on Parsing Technologies* (pp. 225-230). Association for Computational Linguistics.
- Dan Flickinger. (2000). On building a more efficient grammar by exploiting types. Natural Language Engineering, 6(1), 15-28.
- S. Fujita, Francis Bond, Stephan Oepen and T. Tanaka. (2010). Exploiting semantic information for HPSG parse selection. *Research on Language and Computation*, 8(1), 1-22.

References, cont.

- Gene H. Golub and Charles F. Van Loan. (1996). *Matrix computations (3rd ed.)*. Johns Hopkins University Press, Baltimore, MD, USA.
- April Kontostathis and William M. Pottenger. (2002). *Transitivity and the co-occurrence relation in LSI*. Technical Report LU-CSE-02-005, Lehigh University.
- Stephan Oepen, Dan Flickinger, Kristina Toutanova, and Christoper D. Manning. (2004). LinGO Redwoods: A Rich and Dynamic Treebank for HPSG. *Research on Language and Computation* 2(4):575-596.
- Stephan Oepen and J. T. Lønning. (2006). Discriminant-based MRS banking. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006).
- Hinrich Schütze. (1992). Dimensions of meaning. In *Proceedings of Supercomputing*.
- Glenn Slayden. (2010) *Array TFS storage for unification grammars*. University of Washington Master's Thesis, 2010.
- Kristina Toutanova and Christopher D. Manning (2002). Feature Selection for a Rich HPSG Grammar Using Decision Trees. *In Proceedings of the Sixth Conference on Natural Language Learning (CoNLL 2002),* Taipei, Taiwan.

Thank you!