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Motivation/Approach

Assigning deep lexical types to unknown words
LX-Gram, an HPSG for Portuguese
Generics for unknown word handling
shallow pre-processing using LX-Suite
part-of-speech → deep type

Approach
On-the-fly pre-processing
Structured features
e.g. syntactic constituency, grammatical dependencies, etc.
Off-the-shelf tools
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On a previous DELPH-IN Summit. . .
Vista extraction

lkb2standard
Runs over data exported by tsdb
Normalization: X-bar, punctuation,
empty nodes, slashes, . . .
Add information to leafs: Lemma,
inflection, lexical type, . . .
Other fixes
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To see more, check the Treebank Searcher at:
http://lxcenter.di.fc.ul.pt
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On a previous DELPH-IN Summit. . .
SVM and tree kernels

Support-vector machines
Machine-learning, linear binary classifier
Instances as vectors in Rn, dot product measures similarity

Representing structure as feature vectors
Kernel trick, convolution kernels
For trees: Number of subtrees in common between two trees

Software
Tree kernel by Alessandro Moschitti (SVM-TK)
SVM by Thorsten Joachims (SVM-Light)
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On a previous DELPH-IN Summit. . .
The SVM-TK classifier

SVM is a binary classifier
One-vs-one voting strategy

I One classifier for each pair of types
i.e. n·(n−1)

2 classifiers
I Choose the type that got the most votes

Data-sparseness
Restrict to top-n (most frequent) types in a category
Focus mostly on verbal types

But how is “structure” encoded?
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On a previous DELPH-IN Summit. . .
The SVM-TK classifier: Encoding “structure” in features

A positive instance of the verb-anticausative-lex type
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On a previous DELPH-IN Summit. . .
Early experiments

Setup
DeepGramBank: 5, 422 sentences, 130 verb types
PropBank, TreeBank and DepBank vistas (gold data)
Over top-10 verb types
10-fold cross-validation
Comparison with TnT POS-tagger

Results
Dependency features were best, slightly above TnT
(92.28% > 92.16%)
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Since then. . .

Expand the set of assignable types
I Top-10, top-20, top-30, . . .

(verb token coverage: 68%, 84%, 90%, . . . )
I Data-sparseness makes assigning from the full set unfeasible
I SVM-TK loses to TnT as n increases

Use predicted dependencies
I MaltParser, running at 88% LAS
I Slight detrimental impact

NB: Training over predicted data helps
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Since then. . .

Test on extended datasets (automatically annotated)
I Run LX-Gram, take the top-ranked analysis
I Progressively larger datasets: 5k → 10k → 15k → 20k
I On the largest dataset, SVM-TK beats TnT

(even on top-30 with predicted features)

Compare with in-grammar disambiguation
I Allow unknown word to have n types, let LX-Gram disambiguate
I In-grammar disambiguation performs worse

Run on ERG/Redwoods
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Running on ERG/Redwoods

The corpus
Obtaining CoNLL from Redwoods
(thanks to Angelina Ivanova for helping with this)
Close to 45k sentences, 276 verb types
276
130 ≈ 2.12 times as many as in DeepGramBank

Setup
SVM-TK classifier
grammatical dependencies as features
10-fold cross-validation
Top-n verbs
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Verb token coverage (given n-th rank)
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Verb n-th rank coverage correspondence
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Results
Comparison with TnT, over top-n verb types (%)

SVM-TK TnT

top-10 94.76 92.96
top-20 90.27 91.69
top-30 89.04 91.62

LX-Gram/DeepGramBank

SVM-TK TnT

top-19 93.05 89.49
top-41 91.63 87.82
top-56 90.93 87.26

ERG/Redwoods

SVM-TK consistently outperforms TnT
(given enough training data)
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Closing remarks
In a nutshell

The goal
Combine strengths: deep analysis + robust parsing
(automatically assigning lexical types to unknown words)

The way
Off-the-shelf tools
SVM-TK classifier that takes dependencies as features

The result
Improves on current approach
(but requires more data)
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Thank you.
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