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Chapter 1

Introduction

Translated from Greek by Davidson (1874)

In the olden days, circa 100 BC, Dionysius Thrax wrote a grammatical
sketch of Greek, named Art of Grammar.1 He distinguished between different
categories of word based on inflectional affixes, e.g. nouns inflect for case while
verbs inflect for tense and person. Ever since then, linguistic descriptions would
always contain some definition of word categories or lexical categories. Today,
lexical categories play no less important role in computational linguistics. Most
syntactic parsers (systems that identify grammatical relationships between
words and phrases in sentences) use lexical categories in pre- or post-processing
steps. The information in lexical categories can also be exploited in other
natural language processing (NLP) tasks such as noun phrase chunking (divid-
ing text into non-overlapping noun phrases), semantic role labeling (detecting
and classifying semantic arguments associated with the verb) and machine
translation (translating text from one natural language to another).

In this thesis, we study lexical categorization (assigning lexical categories
to words) in the realm of English Resource Grammar—a broad-coverage com-
putational grammar for English (ERG; Flickinger, 2000). The aforementioned
definition of lexical categorization assumes some conception of ‘words’, hence,
we take a step back to define what is considered to be a word.

1In fact the exact authorship of the grammar is disputable (Jurafsky & Martin, 2008,
p. 157).
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1. Introduction

Linguists might define up to eight kinds of word, most notably: (a) the
orthographic word which is, in alphabetic writing systems,2 a sequence of
letters with spaces around it; and (b) the lexical word which consists of one or
more orthographic words but makes up one basic element in the language’s
lexicon, e.g. multi-word expressions such as ‘San Francisco’ and ‘all of a sudden’.
The ERG conception of word blends orthographic with lexical words through
recognizing some types of multi-word expressions. Hence, the whitespace is
neither sufficient nor necessary to identify ERG words (tokens). By the time of
this study, to the best of our knowledge, ERG tokenization (splitting a stream
of text into words) hasn’t been investigated. Therefore, in this thesis we
study tokenization prior to lexical categorization, because assigning ERG lexical
categories presupposes identifying words which comply with the ERG notion of
word. Our overarching aim, however, is to improve ERG syntactic parsing.

ERG lexical categories encode rich syntactic information in addition to the
lexical and morphological information. Even ERG tokens, arguably, encode
some aspects of syntax through recognizing multi-word expressions. Hence, we
can exploit the information in ERG lexical categories, and to a lesser degree in
ERG tokens, to prune the parser search space.

In technical terms, this thesis investigates the use of sequence labeling
(assigning labels or categories to each element within a sequence) to model
the tasks of tokenization and lexical categorization in the realm of English
Resource Grammar (ERG). We use Conditional Random Fields (an instance of
sequence labeling models; Lafferty et al., 2001) to train statistical models for
tokenization and lexical categorization. Then, we study the impact of such
models on ERG syntactic parsing in terms of efficiency, accuracy and coverage.

1.1 Motivation and Research Questions

The English Resource Grammar (ERG) has been continuously developed for
the last 20 years achieving higher grammatical coverage and resilience to
domain variation, i.e. in 2002, the hand-crafted ERG lexicon contained some
8,000 lexical entries, whereas in the 2012 version of ERG there are 38,500
lexical entries. This superior linguistic precision, however, comes at a price of
expensive parsing times. The need for more efficient ERG parsing is growing
with the sophistication of ERG. Hence, the aim of this thesis is to improve the
efficiency of ERG parsing through the use of ERG lexical categories.

In order to study ERG lexical categorization we start by considering related
works. Dridan (2009) and Ytrestøl (2012) are of the most recent and compre-
hensive studies on improving ERG-based syntactic parsing. As in every research
project, they both open the door for new questions, leave some questions
unanswered and make assumptions to facilitate their work.

2In logographic or syllabic writing systems, such as Chinese, there is no explicit marker
for word boundaries.
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1.1. Motivation and Research Questions

First, neither Dridan (2009) nor Ytrestøl (2012) handle ERG tokenization;
while the latter assumes gold standard ERG tokens, the former does not use
ERG-conformant tokens. In fact, to date, parsers working with the ERG either
operate off an ambiguous full token lattice (Adolphs et al., 2008) or assume
idealized gold-standard ERG tokenization (Zhang & Krieger, 2011; Ytrestøl,
2011; Evensberget, 2012). Therefore, in this thesis we seek to determine:

(a) How to apply sequence labeling techniques to approach tokenization.

(b) To what degree CRF sequence labeling in isolation scales to the ERG con-
ception of the tokenization task.

(c) What levels of accuracy CRFs attain on the more classic tokenization
scheme that of the Penn Treebank (PTB; Marcus et al., 1993)—specially
that PTB tokenization plays an important role in ERG parsing.

Second, Dridan (2009) approaches lexical categorization through training
Hidden Markov Models (HMM) and Maximum Entropy (MaxEnt) learners, and
Ytrestøl (2012) experiments with Support Vector Machine (SVM) and MaxEnt,
in all cases using off-the-shelf tools. In this thesis, we investigate the utility of
CRFs for learning ERG lexical categorization with respect to:

(d) What features can be used to model ERG lexical categories.

(e) What levels of accuracy can be attained across several degrees of linguistic
granularity in lexical categories.

(f) How to efficiently train and decode CRFs with the very fine-grained set of
ERG lexical categories.

Third, Dridan (2009) reports that using ERG lexical categories to restrict
the ERG parser search space leads to relatively modest improvements in parsing
efficiency. However, ERG is regularly updated, hence new versions of the
grammar and more gold-standard training data has been released since Dridan
(2009) carried out her experiments. Therefore, an update on the study of
Dridan (2009) is needed. Here, we seek to define:

(g) The best setup to integrate our CRF lexical categorization and tokenization
models with ERG syntactic parsing.

(h) What levels of parsing efficiency, coverage and accuracy we can achieve
using our lexical categorization and tokenization models.

(i) Whether or not the degree of linguistic granularity in lexical categories
significantly affect parsing efficiency.

3



1. Introduction

1.2 Results

Tokenization We present innovative work on ERG tokenization that is accu-
rate enough to serve as a front-end for the ERG parser. Our tokenization results
improve over previously reported PTB ‘state-of-the-art’ tokenization and suggest
an advantage of supervised machine learning over finite-state techniques, in
terms of accuracy, adaptability to variable schemes, and resilience to domain
and genre variation. Our results on tokenization are also published in Fares et
al. (2013).

Lexical Categorization We evaluate the utility of CRFs to model ERG lexical
categories with a detailed feature ablation study. We also show that the heavy
computational cost of training and decoding CRFs can be alleviated through a
divide-and-conquer strategy. Our results also suggest that training CRFs on
rather large amounts of automatically annotated data helps improve lexical
categorization accuracy, especially on out-of-domain data.

Integration We empirically prove that our ERG tokenization model can used
to provide the ERG parser with token boundaries leading to small improvements
in its efficiency without losses in accuracy or coverage. Further, we show that
despite the imperfectness of our ERG lexical categorization models in isolation,
they can substantially reduce ERG parsing time and improve its coverage and
accuracy all together.

1.3 Thesis Outline

Chapter 2: Background This chapter presents the concepts, techniques
and resources we rely upon in this thesis. We introduce the concepts of tok-
enization and lexical categorization in general. We present the parsing pipeline
of the English Resource Grammar (ERG), which shows the need for better
ERG tokenization and lexical categorization. Then, we explain Conditional
Random Fields, the primary sequence labeling technique used throughout this
thesis, and linguistic resources used to train and test CRFs. We review previous
research studies related to our work.

Chapter 3: Tokenization This chapter presents the use of CRFs to model
the ERG and PTB tokenization conventions using generally available, ‘standard’
resources. It provide empirical results on the utility of various types of features
and sensitivity to genre and domain variation, as well as in-depth error analyses
for the most pertinent experiments.

Chapter 4: Lexical Categorization This chapter investigates the use
of CRFs to model ERG lexical categorization. Most notably, it details our

4



1.3. Thesis Outline

experiments with two main degrees of lexical category granularities, viz. major
syntactic categories and lexical types. It also presents our specified lexical types
approach to avoid the computational cost of modeling ERG lexical categories
with CRFs.

Chapter 5: Integration In this chapter, we review approaches to integrate
our tokenization and lexical categorization models into the syntactic parsing
task. Then, we empirically decide to what degree our tokenization and lexical
categorization models can improve parsing efficiency, coverage and accuracy.

Chapter 6: Conclusion This chapter concludes the outcomes of our work
and considers possible improvements and remaining questions for future work.

5





Chapter 2

Background

Although some familiarity with topics in machine learning and natural lan-
guage processing is presupposed, in this chapter we survey briefly some of the
main background assumptions of our project. We describe the concepts of
tokenization and lexical categorization. Then, we introduce the parsing pipeline
of the English Resource Grammar which constitutes our general framework
for tokenization and lexical categorization. We lay down the definition of
Conditional Random Fields, our primary machine learning approach, through
general definitions of sequence labeling and Hidden Markov Models. Then,
we introduce the linguistic resources on which we train and test our sequence
labeling models for both tokenization and lexical categorization. Finally, we
review previous and related research on tokenization and lexical categorization.

2.1 Tokenization

Tokenization is the task of mapping a sequence of characters to a sequence
of tokens. But, what is a token? Manning and Schütze (1999, p. 124) define
a token as “either a word or something else like a number or a punctuation
mark”. What is a word, then? There is no definitive answer for this question.
In fact, linguists suggest defining ‘words’ at various levels, e.g. McArthur (1992,
p. 1120–1121) defines eight kinds of word, such as phonological words and
grammatical words. Furthermore, as we shall see in Chapter 3, the definition
of the token might vary with the grammar formalism and the downstream
natural language processing (NLP) application.

In this project, we study two interpretations of tokenization, namely the
Penn Treebank (PTB) and the English Resource Grammar (ERG) tokenization
schemes. Example 2.1 shows how a given sentence would be tokenized with
respect to the PTB and the ERG tokenization conventions, noting significant
differences between the two schemes.

All aspects of PTB and ERG tokenization conventions are described in
§ 3.2, but for now suffice to say, one striking difference between PTB and ERG

7



2. Background

Example 2.1
Untokenized raw sentence:
For example, this isn’t a well-formed example.
PTB-style tokenization:
¦For¦ ¦example¦ ¦,¦ ¦this¦ ¦is¦ ¦n’t¦ ¦a¦ ¦well-formed¦ ¦example¦
¦.¦
ERG-style tokenization:
¦For example,¦ ¦this¦ ¦isn’t¦ ¦a¦ ¦well-¦ ¦formed¦ ¦example.¦

tokenization schemes is the treatment of punctuation marks; the PTB splits
them from adjacent tokens, whereas the ERG does not. Another significant
difference is that the ERG recognizes some classes of multi-word expressions
(MWEs), such as ‘for example’ and ‘New York’.

One of the ‘classic’ tokenization difficulties is punctuation ambiguity; for
example, the period is a highly ambiguous punctuation mark because it can
serve as a full-stop, a part of an abbreviation, or even both1. Parentheses and
commas typically form individual tokens, but they can be part of names and
numeric expressions, e.g. in ‘Ca(2+)’ or ‘390,926’. Handling contracted verb
forms and the Saxon genitive of nouns is also problematic because there is no
generally agreed-upon standard on how to tokenize them. But corner cases
in tokenization are by no means restricted to the aforementioned ones; with
different tokenization conventions, abstractly rather similar problems emerge.

What we just presented is just a general, high-level description of tok-
enization, which suffices to understand the content of this chapter. Chapter 3,
however, presents our work on tokenization down to the last detail.

2.2 Lexical Categorization

Lexical categorization is the task of assigning lexical categories to a given
sequence of words. Lexical categories (also called parts of speech or word
classes) define classes of words that have similar linguistic behavior. This
linguistic behavior, however, can be defined with respect to several inextricable
criteria (Hopper & Thompson, 1984) such as:

1. Morphological properties: the set of inflectional morphemes that words
of a particular category combine with.

1When abbreviations appear at the end of the sentence, then only one period occurs and
it serves two functions, viz. an abbreviation’s period and a full stop. Within morphology,
this phenomenon is referred to as ‘haplology’; when two consecutive identical syllables occur
one of them is eliminated (Manning & Schütze, 1999, p. 125).

8



2.2. Lexical Categorization

2. Syntactic properties: the context where words of a particular category
occur with respect to the preceding and following words and categories.
Consequently, words within one lexico-syntactic category can be swapped
while preserving grammaticality (e.g. swapping verbs in the following
sentence I read the book vs. I eat the book).

3. Semantic properties: the set of meanings that words of a particular
category convey, though in most lexical classes there is no complete
semantic coherence (Brown, 1957).

Although the definition of lexical categories might seem intuitively clear,
in practice the boundaries between lexical categories are very blurred. On the
one hand, there are several views through which word classes can be defined,
or as Bloomfield (1935) put it:

“A system of parts of speech in a language like English cannot be set up in any
fully satisfactory way: our list of parts of speech will depend upon which
functions we take to be the most important.” (Bloomfield, 1935, p. 269)

On the other hand, under each of the aforementioned criteria (morphological,
syntactic and semantic) there are degrees of how much detail is encoded in
the lexical categories – in other words, how fine-grained or coarse-grained they
are, e.g. we can distinguish between main and auxiliary verbs, and on a finer
degree of granularity we distinguish between the types of auxiliary verbs such
as modal auxiliary and perfective auxiliary verbs.

Furthermore, lexical categories tend to be formalism-dependent, for example
in linguistically precise grammar formalisms (such as Head-driven Phrase
Structure Grammar; HPSG) the lexical categories may encode subcategorization
information and possible syntactic operations (e.g. passivization), while in a
context-free grammar (CFG) such information is typically not included. What
is more, in statistical NLP, we use annotated language resources to learn
the lexical categories, thus the division of lexical categories depends on the
language resource in use; the Brown Corpus tagset, for instance, consists of 87
tags, while in the Penn Treebank (PTB) there are 45 tags.

Even though the definition of lexical categories is a vexed one, the task
of lexical categorization is well-established and has been investigated rather
early in the NLP field (Greene & Rubin, 1971; Marshall, 1983; Schmid, 1994).
Moreover, one can distinguish two general subdivisions of lexical categories in
NLP, namely part-of-speech (PoS) tags and what is often called supertags. While
PoS tags often are defined independent of a specific framework2, supertags seem
to be special to some grammar formalisms. In our view, however, the boundary
between PoS tags and supertags is not completely definable; in full generality,
lexical categorization is a long continuum, where lexical categories vary on

2Even more, Petrov et al. (2012) define a language-independent universal set of PoS tags
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2. Background

Example 2.2
MoreJJR thanIN aDT fewJJ CEOsNNS sayVBP theDT red-carpetJJ treatmentNN
temptsVBZ themPRP toTO returnVB toTO aDT heartlandNN cityNN forIN futureJJ
meetingsNNS ..

JJR: Adjective, comparative; IN: Preposition or subordinating conjunction;
DT: Determiner; JJ: Adjective; NNS: Noun, plural

two dimensions. First, the type of information encoded within the lexical
categories (morphological, syntactic and semantic). Second, the granularity
of the lexical categories, e.g. main vs. modal verbs distinction. We refer to
both PoS tags and supertags as ‘lexical categories’, but in this chapter we shall
keep the distinction between them in order to better explain the concept of
supertags.

2.2.1 Part-of-Speech Tags

Anyone who has used dictionaries must have encountered PoS tags; if you pick
up any dictionary and look up any word, you will notice that it is classified as
a ‘verb’, a ‘noun’, an ‘adjective’, an ‘adverb’ or some other ‘part of speech’.

Part-of-speech tags follow the definition of lexical categories we provided
in the previous section. To clarify the idea of PoS tags, Example 2.2 shows a
PoS tagged sentence from the PTB.

As shown in Example 2.2, the PTB tagset3 distinguishes between singular
and plural nouns (NN vs. NNS) and between verb tenses, e.g. past, past participle,
and present participle (gerund) (VBD, VBN and VBG respectively). However, it
lacks the distinction between ‘to’ as a preposition, an infinitival marker and a
complementizer.

Automatic PoS tagging has been exhaustively studied in the field of NLP
and many rule-based and machine learning models have been proposed to
approach it. The Penn Treebank (PTB; introduced in § 2.6) plays an important
role in the development and evaluation of many PoS taggers. The best-
performing PoS taggers are based on models such as Hidden-Markov Model
(Brants, 2000), Maximum Entropy Model (Denis & Sagot, 2009; Toutanova et
al., 2003), Support Vector Machines (Søgaard, 2010), Decision Trees (Søgaard,
2010), Perceptrons (Collins, 2002; Spoustová et al., 2009); where Toutanova
et al. (2003) and Søgaard (2010) achieve the highest accuracies, 97.32% and
97.50%, respectively, on the last three sections of the PTB. In § 2.4 we will refer
to some of these techniques when describing our approach to tokenization and
lexical categorization.

3The tagset is the set of possible PoS tags.
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2.2.2 Supertags

Supertags are linguistically rich lexical categories with more descriptive power
than PoS tags.

The idea of supertags as lexical descriptions originates back to Joshi and
Srinivas (1994) who proposed enhancing the concept of PoS tags to include
richer syntactic and semantic information. Given the lexicalized grammar
they were using, Lexicalized Tree Adjoining Grammar (LTAG; Schabes &
Joshi, 1990), it was possible to use the LTAG elementary trees to assign each
word more information than that of PoS tags. Hence, they created super PoS
tags (supertags) that encode long-distance dependencies in addition to the
morphological and localized information PoS tags typically include.

Joshi and Srinivas (1994) describe supertagging as “almost parsing”; they
believe that the large amount of information provided by supertags leaves
very little and light work for the parser. In other words, the supertags impose
complex constraints on the parse search space which makes parsing a ‘trivial’
task.

More recently, other lexicalized grammar formalisms adopted the approach
of supertagging (Clark, 2002; Ninomiya et al., 2006), but unlike PoS tags,
there is no ‘standard’ definition for supertags, rather the set of supertags is
entirely dependent on the grammar formalism. Dridan (2009) reports that the
number of supertags across grammar formalisms ranges from 300 supertags
in LTAG (Joshi & Srinivas, 1994) to 8000 supertags in some versions of HPSG
(Toutanova et al., 2002).

As such, supertags encode more information than PoS tags, and the number
of supertags is noticeably larger than that of PoS tags. However, the problem
of supertagging is still a sequence classification one (with a relatively large
number of classes), and so the models used for PoS tagging can also be used
for supertagging. However, the accuracy of the supertagging models would
be much lower than that of PoS tagging models which land around 97%
(cf. previous section). In fact, a supertagging accuracy of 97% is not easily
attainable, if at all, with a single-tag supertagger.

Finally, to illustrate the difference between supertags and PoS tags,
Example 2.3 shows the same sentence of Example 2.2 but with ERG lexical
types (supertags) assigned to its words. We will come back to explaining the
details of the ERG lexical types in Chapter 4.

2.2.3 Lexical Categories for Parsing

Lexical categorization can be seen as a by-product of syntactic analysis. In
other words, lexical categories are dependent on the syntactic analysis as they
are derived from the syntactic structure of the sentence. Accordingly, some may
ask: if lexical categorization is conceptually a result of syntactic parsing, how
would we use it to help solve the problem of parsing? It is true that using lexical
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Example 2.3
Moreaj_pp_i-more_le thanp_np_ptcl-ngap_le a fewaj_-_i-svrl_le CEOsn_-_mc_le
sayv_pp*-cp_fin-imp_le thed_-_the_le red-aj_-_i-color-er_le carpetn_-_mc_le
treatmentn_pp_mc-of_le temptsv_np-vp_oeq_le themn_-_pr-them_le tocm_vp_to_le
returnv_pp*_dir_le top_np_i-nm-no-tm_le ad_-_sg-nmd_le heartlandn_-_mc_le
cityn_-_c_le forp_np_i_le futureaj_-_i-att_le meetings.n_pp_c-nt-of_le

aj_pp_i-more_le: Adjective, selects for prepositional phrase;
p_np_ptcl-ngap_le: Preposition, selects for noun phrase

categorization to improve parsing may seem counter-intuitive, but empirically,
it is possible to assign lexical categories using statistical morphological and
local syntactic information. For example, X. Chen and Kit (2011) show that
the Stanford tagger (Toutanova et al., 2003) outperforms the Berkeley parser
(Petrov & Klein, 2007) when the latter is evaluated on the correctness of the
PoS tags it assigns. Thus, it does make sense, especially in the empiricist
world, to use lexical categorization in order to improve parsing.

Driven by the high performance of lexical categorization, especially PoS
tagging, many studies have suggested integrating lexical categorization with
syntactic parsing. Lexical categories can be used in pre- or post-processing
models of parsing in order to improve parsing accuracy and efficiency. Addi-
tionally, taggers can make parser domain adaptation easier, especially with
the relatively low cost of retraining taggers compared to that of retraining
parsers. Creating training data for taggers is cheaper than doing so for parsers
for two main reasons: (1) the training data for taggers consist of flat sequences
of tags, while for parsers it is hierarchical treebanks (2) one can train taggers
on the output of parsers, i.e. obtain new training data for the taggers merely
by running a parser.

We distinguish between two approaches for integrating lexical categorization
with parsers:

1. Soft-constraint: the usage of lexical categories in a disambiguation model
for resulting parses of some sentence, or incorporating information from
lexical categories into an already existing model as auxiliary distribution
features (Plank & van Noord, 2008).

2. Hard-constraint: the usage of lexical categories to further restrict the
rules that could be licensed in the syntactic analysis of some sentence.
Chart pruning is an example of using lexical categories as hard constraints
to prune parse chart cells (Dridan, 2009).

In order to compensate for errors resulting from PoS taggers and supertag-
gers, several studies suggested increasing the number of tags assigned per
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word, i.e. allowing the tagger to retain some degrees of ambiguity in its output.
Accordingly, supertaggers and PoS taggers can be categorized as follows:

1. Single-tagger: single tag per word, which is the most probable tag.

2. Multi-tagger: n-best tags per word, where the top n tags are regarded
as equally probable tags.

3. Prob-tagger: n-best tags per word each weighted by its probability.

4. Selective-tagger: only tags that recieve a probability higher than a
predefined value β.

5. All-tagger: the set of all candidate tags with a non-zero probability.

Curran et al. (2006), for example, implemented multi-tagging by assigning
multiple tags to each word where the probabilities of these tags are within a
factor of β to the most probable tag for that word.

Instead of assigning multiple tags per word, one could assign multiple
sequences of tags per sentence. We refer to such models as “n-best list models”.
One instance of n-best decoding algorithms is the List Viterbi Algorithm (LVA)
(Seshadri & Sundberg, 1994) which finds the top n globally best tag sequences.
The rationale behind using LAV is that in most cases the difference between
the best tag sequence and second best one may be one or two tags, hence, the
tag ambiguity need be retained only in the positions (words) where the n-best
lists differ, the rest of the words would receive one tag each.

2.3 ERG Parsing Pipeline

The Linguistic Grammars Online (LinGO) English Resource Grammar (ERG;
Flickinger, 2000) is a broad-coverage, linguistically precise grammar for En-
glish written within the linguistic framework of Head-driven Phrase Structure
Grammar (HPSG), a heavily lexicalized, unification-based formal theory of lan-
guage (Pollard & Sag, 1994). The ERG has been under continuous development
since 1993, and in this thesis we use the 2012 version of the ERG (dubbed
‘ERG1212’). As of the time, the ERG provides a manually constructed lexicon
of approximately 38,500 lexical entries (we will explain the concept of lexical
entries in Chapter 4).

The deep linguistic analysis pipeline of the ERG consists of several ‘shallow’
pre-processing components (Adolphs et al., 2008). As depicted in Figure 2.1,
the ERG parsing pipeline consists of four main stages prior to the syntactic
parsing proper.

The pipeline’s first input is ‘raw untokenized text’ (a sequence of characters).
In stage one, the pipeline starts by normalizing the input text, which includes
tasks such as quote normalization and disambiguation. Then it splits the
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Raw text

Sequence of initial tokens

Lattice of internal tokens

Lattice of lexical entries

Lattice of lexical items

String normalization
PTB-like token boundary detection

PoS tagging
Normalization & Classification
Lightweight NE Recognition
Mapping to internal tokens

Morphological segmentation
Lexical instantiation

Lexical parsing
Lexical filtering

Syntactic parsing

Figure 2.1: The ERG parsing pipeline showing the input to each stage on its
left side

normalized text into PTB-compliant tokens, thus producing a sequence of
so-called initial tokens.

In the second stage, the sequence of initial tokens is tagged using a PTB-
trained PoS tagger. Subsequently, a small number of spell correction rules
are applied as a second round of text normalization. Additionally, each initial
token is assigned a ‘surface-form’ class (such as numeric, alphanumeric, non-
alphanumeric). A ‘lightweight’ named entity recognizer is utilized to assign
categories such as numbers, email and web addresses to initial tokens. The
second stage ends by mapping ‘initial tokens’ to the so-called ‘internal tokens’
producing a lattice of internal tokens. The internal token mapping phase
transforms initial tokens to conform to the ERG tokenization conventions, e.g.
among other things (to which we shall come back in Chapter 3), attaching
punctuations to adjacent initial tokens (remember that one of the main dif-
ferences between PTB and ERG tokenization is the treatment of punctuation
marks).

The third stage consists of (a) morphological segmentation followed by (b)
lexical instantiation. Morphological segmentation enumerates all possible ways
of deriving a word (from some inflected form), e.g. ‘sleeps’ has at least two
segmentations (1) ‘sleep’ as a verb, third person singular, or (2) ‘sleep’ a
noun, in the plural. During the lexical instantiation phase, lexical entries that
can be made up from (sequences of) tokens in the internal token lattice are
instantiated (as each lexicon entry consists of one or more internal tokens).

In the fourth stage, lexical parsing is essentially chart parsing, however
limited to the grammar’s lexical rules (the inflectional and derivational rules)
and constrained by the segmentation decisions made in the morphological
segmentation phase. The output of the lexical parser is filtered by hard
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constraints, e.g. eliminating redundant lexical items, and passed to the syntactic
parser (the fifth stage).

This ‘hybrid processing’ of the ERG allows achieving richer syntactic analysis,
but it comes at a price. The ERG parsing pipeline is computationally expensive
as it follows a conservative strategy of not making uncertain decisions, but
rather deferring them to the syntactic parsing phase. Hence, we believe that
by improving the ERG ‘pre-parsing’ steps (stages 1–4) the overall parsing
performance would improve. In this project, we aim to improve the ERG
tokenization and lexical categorization through the use of sequence labeling
techniques, namely CRF, which we will explain in the following section.

2.4 Sequence Labeling

Sequence labeling (or sequence classification) models fall under two types, non-
sequential and sequential models. Non-sequential (point-wise) classification
considers one observation at a time, extracts features about that observation,
and then accordingly classifies the observation instance into one class out of a
predefined discrete set. Sequential (or sequence) classifiers, however, predict
an output vector of classes given an input vector of observations (through
extracting a vector of features for each input item).

Hidden Markov models (HMMs), maximum entropy Markov models (MEMM)
and conditional random fields (CRFs) are examples of ‘probabilistic’ sequence
classifiers, in contrast to a finite-state transducer which is a non-probabilistic
sequence classifier.

We rely on CRFs to model the tasks of tokenization and lexical categorization;
first because CRFs have achieved competitive results and proven very successful
in many NLP tasks (Sha & Pereira, 2003; Skjærholt, 2011; Lapponi et al., 2012).
Second, recent works on ERG lexical categorization (Dridan, 2009; Ytrestøl,
2012) investigated the use of HMM, Maximum Entropy (MaxEnt) and support
vector machine (SVM) techniques but none, to our knowledge, looked into using
CRFs. Third, with our definition of lexical categories we can examine the
scalability of CRFs across label sets of different granularity.

CRF can be viewed as a discriminative analogue of the generative HMM, hence
we first give an explanation of HMM and build on that to introduce CRF.

2.4.1 Hidden Markov Model

Hidden Markov Models (HMM) are one of the most important, and yet simplest,
language modeling techniques in NLP.

An HMM is a generative model based on a Markov chain which is a directed
probabilistic graphical model with the Markov assumption. So in order to
define HMM we first need to lay down the concepts of ‘generative models’ and
‘Markov assumption’.
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Generative models Suppose we have a set of training examples x(i), y(i)

for i = 1 . . .m where each x(i) is an input and y(i) is the corresponding output
(labels). The task is to learn a function f that maps inputs x to labels f(x),
e.g. in PoS tagging we want the function f to take a sentence (a sequence of
words) as an input and map it to a sequence of PoS tags.

In a generative model this mapping is achieved by learning (from some set
of training examples) the joint distribution P (x, y) and this joint distribution
is what mainly characterizes generative models. However, with the rule of
conditional probability we can factor P (x, y) into

P (x, y) = P (y)P (x|y) (2.1)

Now that we introduced Equation 2.1, let’s see how it can be used to predict
outputs from given inputs. For any input x we want to find f(x), the sequence
of labels that maximizes the probability of y given the input x

f(x) = arg max
y

P (y|x)

Using Bayes’ theorem4 we can write

f(x) = arg max
y

P (y)P (x|y)
P (x)

Observe that P (x) does not vary with y, so we can discard it as it is constant
with respect to y, thus

f(x) = arg max
y

P (y)P (x|y)

The right-hand side of the last equation corresponds to the right-hand side of
Equation 2.1.

Markov assumption Consider a sequence of random variables X1 . . . Xn

each of which can take any value in a predefined finite set V. We want to
model the joint probability distribution

P (X1 = x1, X2 = x2 . . . Xn = xn) where x1 . . . xn ∈ V (2.2)

We can rewrite Equation 2.2 using the chain rule (which follows by the
definition of conditional probablity) as such

P (X1 = x1, X2 = x2 . . . Xn = xn)

= P (X1 = x1)
n∏
t=2

P (Xt = xt|X1 = x1 . . . Xt−1 = xt−1) (2.3)

4The simple form of Bayes’ theorem for events A and B:

P (A|B) = P (B|A)P (A)
P (B)
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Now the ‘First-Order Markov’ assumption states that Xt is conditionally
independent of all the previous random variables when Xt is conditioned only
on Xt−1. More formally, for any t ∈ 2 . . . n for any sequence x1 . . . xn

P (Xt = xt|X1 = x1 . . . Xt−1 = xt−1) ≈ P (Xt = xt|Xt−1 = xt−1) (2.4)

By applying the Markov assumption to Equation 2.3 we get

P (X1 = x1, X2 = x2, . . . Xn = xn)

≈ P (X1 = x1)
n∏
t=2

P (Xt = xt|Xt−1 = xt−1)

If we consider the ‘Second-Order Markov’ assumption, Equation 2.3 would be
rewritten as such

P (X1 = x1, X2 = x2 . . . Xn = xn)

≈ P (X1 = x1)× P (X2 = x2|X1 = x1)×
n∏
t=3

P (Xt = xt|Xt−2 = xt−2, Xt−1 = xt−1)

For convenience, we assume special random variables X0 and X−1 (start
symbols) so that we can write

P (X1 = x1, X2 = x2 . . . Xn = xn)

≈
n∏
t=1

P (Xt = xt|Xt−2 = xt−2, Xt−1 = xt−1)

Notice that, contrary to the exact decomposition we get from the chain rule,
the Markov assumption does not lead to exact equality, obviously because of
the independence assumption.

Bigram HMM In general, an HMM defines a joint distribution over a word
sequence x = x1, x2 . . . xn paired with a tag sequence y = y1, y2 . . . yn where
xt is the tth word in the sentence and yt is the tag of the tth word (depicted in
Figure 2.2).

For any word sequence x = x1, x2 . . . xn where xt ∈ V for t = 1 . . . n, and
V is the set of possible words, and for any tag sequence y = y1, y2 . . . yn where
yt ∈ S for t = 1 . . . n and S is the set of possible labels (states), the joint
probability of the word and tag sequences in a first-order HMM is

p(x1 . . . xn, y1 . . . yn) =
n∏
t=1

P (yt|yt−1)P (xt|yt) (2.5)

Equation 2.5 consists of two terms (parameters), transition probability and
emission probability, P (yt|yt−1) and P (xt|yt), respectively. Notice that the
transition probability depends on first-order Markov assumption, hence the
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y0 yn+1y1

x1

y2

x2

y3

x3

y4

x4

Figure 2.2: A bigram HMM — This figure is also called ‘independency graph’
where only dependency information is represented, and we can see that yt
depends only on yt−1.

V the vocabulary, the set of possible words
x = x1, x2 . . . xn a sequence of observations where xt ∈ V
S the set of possible states (tags or labels)
P (yt|yt−1) the probability of moving from state (label) yt−1 to

state yt
P (xt|yt) the probability of observation xt being generated

from the state yt
y0,yn+1 start and final states, special states that don’t gen-

erate observations
Table 2.1: HMM specifications

name ‘bigram’ HMM. Table 2.1 lists the components of an HMM that depends
only on the immediately preceding observation.

From Equation 2.5, the HMM makes two independence assumptions that, as
we shall see, impair its performance. First, the Markov assumption and second
the assumption that single observations are conditionally independent from
each other. In the following section we introduce discriminative models which
make no unwarranted assumptions on the dependencies among observations.

2.4.2 Conditional Random Fields

As described in the previous section, generative models explicitly model a joint
probability distribution P (x, y) over inputs and outputs. Moreover, they do not
model all dependencies among inputs, but rather make strong independence
assumptions which can lead to reduced performance. The observed features
(inputs) are often correlated with each other, meaning that they either have
a lot of redundant information or are strong indicators of each other, and
they are best represented in terms of interacting features and long-range
dependencies between the observations. To clearly illustrate the point here, we
borrow an example from Alpaydin (2004). One is still able to read this w?rd
because the sequence of characters which makes up the word is constrained
by the words of the language. These contextual dependencies may also occur
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on higher levels such as the syntax (dependencies among words) or even
the pragmatics (dependencies among sentences). As a consequence of the
independence assumption, the model may overestimate or underestimate some
correlated features which may result in a skewed probability distribution.
However, trying to model the ‘correct’ (in)dependencies (by adding edges
between correlated features) is hard and might lead to densely connected,
intractable models.

So instead of modeling the joint probability, discriminative models attempt
to model the conditional distribution P (y|x) considering only the distribution of
y over x. Therefore, discriminative models can use arbitrary, non-independent
features of the observation sequence without having to model those dependen-
cies.

Conditional random fields (CRF; Lafferty et al., 2001) are an instance
of sequence labeling discriminative models. For simplicity and clarity, we
will extend the definition of HMMs to arrive at that of the CRF following the
explanation of Sutton and McCallum (2006).

We first reformulate the bigram HMM equation (Equation 2.5) to allow
generalization

P (x, y) = 1
Z

exp

∑
t

∑
i,j∈S

λij1{yt=i}1{yt−1=j} +
∑
t

∑
i∈S

∑
o∈O

µoi1{yt=i}1{xt=o}


(2.6)

λij and µoi are the main parameters in the equation above. 1{yt=i}1{yt−1=j}
and 1{yt=i}1{xt=o} are indicator functions that return one if the subscript
conditions are satisfied and zero otherwise.

By setting the distribution parameters λij = logP (y′ = i|y = j) and
µoi = logP (y = i|x = o) we get the original HMM equation5. But since λij and
µio are not necessarily log probabilities, we need a normalization function Z
to guarantee that the distribution sums to one.

Now we can introduce feature functions fk(yt, yt−1, xt), which are just a
notational trick to make the formula compact

P (x, y) = 1
Z

exp
(

K∑
k=1

λkfk(yt, yt−1, xt)
)

(2.7)

We know that P (y|x) = P (x,y)
P (x) , and one way to compute P (x) is through

marginalizing y over P (x, y), thus

P (y|x) = P (x, y)∑
y′ P (x, y′)

5Remember: aloga(x) = x and ax+y = axay
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Now we substitute Equation 2.7 into the previous equation

P (y|x) =
exp

(∑K
k=1 λkfk(yt, yt−1, xt)

)
∑
y′ exp

(∑K
k=1 λkfk(y′t, y′t−1, xt)

) (2.8)

Equation 2.8 represents a linear-chain CRF that encodes features only for
the current word’s surface form. By allowing the feature functions to be
more general than indicator functions we arrive at the general definition of
linear-chain CRFs.

At this point we can present the general definition of linear-chain CRFs by
Sutton and McCallum (2006):

Let Y , X be random vectors, Λ = λk ∈ <K be a parameter vector, and
{fk(y, y′, xt)}Kk=1 be a set of real-valued feature functions. Then a linear-
chain conditional random field is a distribution P (y|x) that takes the form

P (y|x) = 1
Z(x) exp

(
K∑
k=1

λkfk(yt, yt−1, xt)
)

where Z(x) is an instance-specific normalization function

Z(x) =
∑
y

exp
(

K∑
k=1

λkfk(yt, yt−1, xt)
)

(Sutton & McCallum, 2006)

Lavergne et al. (2010) distinguish between two types of feature functions,
unigram and bigram. Given our notion of feature functions, these two types
can be defined as

fy,x(yt, yt−1, xt) = 1(yt = y, xt = x)
fy′,y,x(yt, yt−1, xt) = 1(yt−1 = y′, yt = y, xt = x)

Bigram features are a special type of structural features which encode in-
formation about the n adjacent labels, and in the case of bigram features
n = 2.

The learning and inference complexities of a linear chain CRF grow quadrat-
ically with the number of labels (Lavergne et al., 2010). Moreover, the number
of feature parameters also increases with the size of the label set as follows,
where |X| and |Y | are the cardinals of observations and labels, respectively:

Unigramfeatures : |Y | × |X|
Bigramfeatures : |Y 2| × |X|
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In concrete terms, if we have a unigram feature that encodes the word’s
surface form within a training set of 10,000 word forms and 100 different
labels, the number of feature parameters would be 10, 000× 100 = 1, 000, 000.
Furthermore, if we use a bigram feature instead of unigram, the number of
parameters would be 10, 000× 100× 100 = 100, 000, 000. As we shall see in
Chapter 4, due to its complexity, training CRFs with very large label sets and
massive amounts of data becomes prohibitively expensive.

What we just explained in this section, is just a brief formal definition of
CRFs, for further reading we recommend Sutton and McCallum (2006) who
explain the parameter estimation, regularization and inference aspects of CRFs;
and Lafferty et al. (2001) who introduce CRF as a general graphical structure.

Finally, for tokenization and lexical categorization experiments we use the
Wapiti toolkit6 (Lavergne et al., 2010) which implements, among other models,
linear-chain CRFs. All of our experiments in Chapter 3 and Chapter 4, use the
L-BFGS algorithm for parameter estimation, because it gives the best results
for our setup, even though it takes long time to get to these results.

2.5 Significance Hypothesis Testing

In many scientific fields, it is common practice to test for statistical significance
of the experimentation results. In statistical natural language processing,
statistical hypothesis testing is also applied to compare the experimental
results of different systems (models) evaluated on the same test sets.

In spite of its wide acceptance and usage, Velldal (2008) argues that
statistical significance in NLP is not all-clear because the details of statistical
significance testing are often left out of discussion, only p and α values are
reported. We agree with the reservations of Velldal (2008), but still we test
for statistical significance in this thesis, occasionally though when the number
differences look very small.

In this section, we briefly present the details of statistical significance
testing, making sure, however, that all the details needed to replicate the tests
are provided.

In NLP, statistical significance tests seek to define whether or not the
difference in performance between two systems (or models) is due to chance—
that is, to decide if two sets of observations are drawn from the same probability
distribution. Hence, we define the null hypothesis H0 as any variation in the
set of observations (observed pairs of results) is due to chance. We reject
the null hypothesis if the p-value is smaller than or equal to a predefined
significance level α. Throughout this thesis, we reject the null hypothesis at
the 0.05 significance level (α = 0.05).

We use the Wilcoxon signed-rank test (Wilcoxon, 1945), a non-parametric
test that does not assume any distribution from which the observations are

6See http://wapiti.limsi.fr/
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supposedly has been sampled. The null hypothesis in the Wilcoxon test is that
the median difference between pairs of observations is zero.

We use the Wilcoxon signed-rank test because, as a non-parametric test, it
makes fewer and less stringent assumptions than parametric tests which assume
that the observations would approximate a normal distribution. Moreover,
within the family of non-parametric tests, the Wilcoxon test is more sensitive
than the sign test (Velldal, 2008).

Finally, to collect observations, we follow Spoustová et al. (2009) in splitting
the test set into numerous subsets and then evaluate our models on these
subsets.

2.6 Resources
This section gives a short introduction to the linguistic resources used through-
out this project.

Penn Treebank

The Penn Treebank (PTB; Marcus et al., 1993) is a corpus of more than 4.5
million words of American English. It was initially released in 1992 and played
a significant role in boosting statistical NLP research.

The PTB consists of several sub-corpora (‘portions’) such as the Wall Street
Journal (WSJ), the Brown corpus and the Switchboard corpus. In this project,
we use the one-million-word WSJ portion and the Brown corpus (Francis, 1964),
which contains 500 samples of modern English text, distributed over 15 genres,
and totaling more than a million words.

NANC

The North American News Text Corpus (Graff, 1995) is composed of unanno-
tated news text. The corpus contains 300 million words from different news
sources such as the Wall Street Journal and the New York Times. In this
thesis, we use 25 million words of the NANC WSJ portion.

GENIA

The GENIA corpus (Kim et al., 2003) is a semantically annotated corpus of
biomedical literature. It contains 2000 abstracts with more than 400,000 words.

Redwoods & DeepBank

The Redwoods Treebank (Oepen et al., 2004) is a collection of manually
disambiguated corpora analyzed with the ERG within the HPSG framework. It
samples a varity of domains, including transcribed dialogue, e-commerce emails,
tourism information, and a 100-article portion of the English Wikipedia.
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As Redwoods is continuously expanded with new corpora, a large proportion
of the PTB WSJ text with gold-standard ERG analyses was added to the treebank
recently (DeepBank; Flickinger et al., 2012). By the time of writing this thesis,
two versions of DeepBank were available, DeepBank v0.9 (Sections 0 – 15 of the
PTB WSJ) and DeepBank v1.0 (Sections 0 – 21).

In all cases, the aforementioned resources require considerable processing in
order to be used in tokenization and lexical categorization experiments. Some
degrees of inconsistency, furthermore, appears to be a common attribute to
almost all of them. More details on the use of these resources will be given in
Chapter 3 and Chapter 4.

2.7 Literature Review

We are not the first to study the problems of tokenization and lexical catego-
rization. In the following, we review threads of prior research related to our
work. First, we introduce Dridan (2009) and Ytrestøl (2012), two recent PhD
projects on ERG parsing, as they are closely related to our work.

Dridan (2009) studies the use of lexical information to improve ERG HPSG-
based parsing. She investigates improving the PET parser (Callmeier, 2000)
using several supertag granularities and two taggers with two different tagging
models, namely TnT (HMM-based; Brants, 2000) and C&C (MaxEnt-based; Clark
& Curran, 2007). She reports that although TnT achieves higher accuracy than
C&C, the latter gives better results than former if its probability distribution
is used to guide tag assignment instead of just using the best single-tag.
Furthermore, Dridan (2009) looks into the usefulness of tag sequences assigned
by TnT and C&C, and again she finds that C&C gives better results because it
assigns tag sequences that are acceptable by the parser if not necessarily correct.
Finally, Dridan (2009) employs lexical information to improve parsing from
three aspects. First, increasing parser robustness by using lexical statistics
to handle unknown words. Second, reducing lexical ambiguity to boost parse
efficiency. Third, using lexical statistics in parse ranking.

Ytrestøl (2012) evaluates the use of transition-based parsing for ERG HPSG,
using C&C and SVMhmm (SVM-based; Joachims et al., 2009) supertaggers to
assign ERG lexical categories prior to parsing. Ytrestøl (2012) reports that
SVMhmm performs better than C&C when trained on relatively limited amounts
of data. He finds, however, when training C&C on very large amounts of auto-
matically produced training data, namely the WikiWoods Treecache (Flickinger
et al., 2010), it outperforms SVMhmm. However, we should point out that
(a) C&C needs one million training sentences to achieve the accuracy of the
SVMhmm when trained on 250,000 sentences, and (b) SVMhmm is very com-
putationally expensive to train while C&C scales linearly in time to the amount
of training sentences.
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2.7.1 Tokenization

Dridan and Oepen (2012); Tomanek et al. (2007); Foster (2010), inter alios,
revived the research on tokenization for English after it had been regarded as
an ‘uninteresting’ sub-problem of NLP for several decades.

Foster (2010), in a study on parsing user-generated content, reports an
improvement in statistical parsing accuracy of 2.8 points F1 over user-generated
Web content, when making available to the parser gold-standard token bound-
aries.

While Foster (2010) exemplifies the effect of tokenization on downstream
NLP tasks, other studies point out problems in tokenization using different
tools. Øvrelid et al. (2010), for example, observe that tokenizing the GENIA
text using the GENIA tagger (Tsuruoka et al., 2005) leads to token mismatches
in almost 20% of the sentences in the treebank.

Dridan and Oepen (2012) observe that state-of-the-art statistical con-
stituency parsers perform relatively poorly at replicating even the most common
tokenization scheme, viz. that of the PTB. They develop, therefore, a cascade
of regular, string-level rewrite rules (dubbed REPP) for PTB tokenization, with
almost 99% sentence accuracy. We will use their results as our main point of
reference in Chapter 3.

Tomanek et al. (2007) apply CRF learners to sentence and token boundary
detection in bio-medical research literature. They defined their own uniform
tokenization scheme for bio-medical texts and built novel corpora based on the
PennBioIE text (Kulick et al., 2004) to train their tools on. In our experiments
we also use CRFs but we experiment with a range of tokenization conventions
and text types—in all cases using generally available, ‘standard’ resources.

2.7.2 Lexical Categorization

As explained earlier, part-of-speech tagging and supertagging, in our view, are
instances of lexical categorization. In the following, however, we use the terms
‘PoS tagging’ and ‘supertagging’ as they occur in the surveyed works, but we
don’t convey any fundamental conceptual distinction when one term or the
other is used.

Dalrymple (2006) studies the use of a PoS tagger as a soft constraint to
reduce the ambiguity of a Lexical Functional Grammar (LFG) parser. She
introduces the concept of “tag-sequence equivalence classes” which is the set of
parses of a sentence that lead to the same tag sequence. Accordingly, Dalrymple
(2006) states that if different parses tend to be associated with different tag
sequences (fall in different equivalence classes) then PoS tagging would greatly
help parse disambiguation. In the analysis of the parser’s output, she finds
that 29.47% of the sentences in section 13 from the WSJ have the tag sequences
of their parses all in the same equivalence class, and so tagging would not help
disambiguating for about 30% of the sentences in section 13. However, it was
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not possible to say how much exactly tagging would help disambiguate the
remaining 70%, since she did not have gold standard for LFG-based parses in
WSJ section 13. Thus, she assumes that the correct tag sequence would most
probably be found in the largest equivalence class. She concludes: “If these
data are representative, we can expect to rule out 45-50% of the potential
parses for a sentence by choosing the correct tag sequence for the sentence”
(Dalrymple, 2006).

Watson (2006) studies the choice of PoS tagging models in order to improve
parsing. She conducts her study using an unlexicalized statistical parser, RASP
(Robust Accurate Statistical Parsing (Briscoe & Carroll, 1995)), and tests
on the PARC 700 Dependency Bank (700 sentences from the WSJ section 23
parsed by the same LFG grammar in Dalrymple (2006); King et al., 2003).
She reports if parsing efficiency is the main concern then a single tag should
be used, however, if either accuracy or coverage is the more important factor
then a multi-tagger can be used.

Prins and van Noord (2003) use HMM PoS taggers to remove the unlikely
lexical categories for the Alpino Parser (an HPSG-based parser for Dutch (Bouma
et al., 2001). What is interesting about this study is training the tagger on
the output of the parser which would have two direct implications. First,
it eliminates the problem of incompatibility between the tagset and the pre-
terminals of parses. Second, the tagger would learn the tag sequence favored
by the parser and not necessarily the correct ones.

Prins and van Noord (2003) experiment with 1365 lexical categories, train
on 24 millions words and test on 604 randomly selected sentences from the
Alpino Treebank.7 They conclude that the use of a tagger greatly reduces
parsing times, from 60 seconds to 14 seconds of CPU time per sentence, and
increases parsing accuracy.

Curran et al. (2006) discuss the use of a supertagger as a front-end for
parsers in the realm of Combinatory Categorial Grammar (CCG). They propose
assigning one or more lexical categories (supertags) to each word in order to
compensate for the high supertagging error rate. Moreover, they report an
increase in the accuracy of supertagging when allowing ambiguity in PoS tags,
since PoS tags are essential features for supertagging. Testing on section 23
of CCGbank (Hockenmaier, 2003), their single-tag supertagger accuracy rises
from 92.0% to 97.7% with a supertag ambiguity of 1.4 categories per word
and a PoS tag ambiguity of 1.1 tags per word. Curran et al. (2006) do not
explicitly report how this improvement in supertagging accuracy is reflected
on parsing.

Yoshida et al. (2007) investigate the effectiveness of ambiguous, multiple
PoS tagging to improve an HPSG parser trained on the PTB, as well as to study
parser domain adaptation. They report that multiple tags do not have a

7“The Alpino Treebank 1.0”, University of Groningen, 11 2002, CDROM; http://
www.let.rug.nl/~vannoord/trees/
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noticeable effect unless combined with a probability distribution that indicates
the likelihood of each tag. Additionally, when evaluating on section 23 of
the PTB WSJ, the F1 score for the single-tag parser was 84.10% while for the
prob-tag parser it was 85.06%, however, the mean parsing time was 936 msec
for the latter and 785 msec for the former. As for adaptation to the GENIA
corpus, retraining the PoS tagger on the Penn BioIE corpus caused the F1 to
increase from 78.29% for a multiple-tag unadapted parser to 82.02%.

Rimell and Clark (2009) investigate adapting a CCG-based parser to the
biomedical domain. Taking advantage of the CCG formalism they adapt the
parser on two levels, PoS tags and CCG lexical categories (supertags), to which
they refer as “adaptation at low levels of representation”.

Retraining a PTB-based PoS tagger on in-domain vocabulary, specifically
the first 1000 sentences from the GENIA corpus, results in an accuracy rise from
93.4% to 98.7%. However, to retrain the supertagger, they had to manually
annotate the first 1000 sentences from GENIA, and then they created three
supertagging models, the first model is the standard model trained on WSJ
Sections 02-21 of CCGBank, the second model is trained on the 1000 manually
annotated sentences from the GENIA text, and the third one is a hybrid model
trained on a combination of WSJ CCGBank and GENIA where they use a
weighting factor of 10 for the GENIA sentences. To test these models, they
created a combination of PoS taggers and supertaggers, where the baseline is
the WSJ PoS tagger and WSJ supertagger with an accuracy of 89.0% and the
best-performing one is the GENIA PoS tagger and hybrid supertagger with an
accuracy of 93.0%.

Rimell and Clark (2009) evaluate the effect of these models on parsing
results using the BioInfer corpus (Pyysalo et al., 2007) and different pipelines
of PoS taggers and supertaggers. They report that among different settings of
the CCG parser, the GENIA PoS tagger and hybrid supertagger pipeline perform
best with an F1 score of 81.5%, while the unadapted pipeline, WSJ PoS tagger
and supertagger, has an F1 score of 76.0%.

From the studies surveyed, we see that lexical categories can be used to
disambiguate the parser’s output and to improve its accuracy and efficiency. In
order to improve the parsing accuracy, multiple tags per word may be needed.
Improving parsing efficiency, however, requires limiting the number of tags per
word, so that the parse space can be pruned.

2.8 Summary

In this chapter, we gave introductory definitions of tokenization and lexical
categorization which are the topics of Chapter 3 and Chapter 4, respectively.
We also introduced the ERG parsing pipeline to which we will refer repeatedly
throughout this thesis. Then, we explained CRFs and its advantages as a
discriminative machine learning models, as well as its complexity that might
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be limiting if the number of labels is very large (as we shall see in Chapter 4).
Finally, we reviewed related studies on tokenization and lexical categorization.
Through these studies, we showed the effect of tokenization on downstream
application. We also surveyed how lexical categorization can be used to improve
parsing efficiency and accuracy with different setups and tradeoffs.
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Chapter 3

Tokenization

Tokenization constitutes a foundational pre-processing step for almost any
subsequent natural language processing task. As evidenced by Forst and
Kaplan (2006) and Foster (2010) token errors will inevitably propagate into
any downstream analysis. Lease and Charniak (2005) also emphasize that many
problems can be resolved early in the processing pipeline instead of deferring
them to the parser. With a few notable exceptions, however, tokenization
quality and adaptability to (more or less subtly) different conventions have
received comparatively little attention over the past decades.

In this chapter, we investigate the use of sequence labeling techniques for
tokenization, which has been predominantly approached through rule-based
techniques, typically finite-state machines or (cascades of) regular expressions
(Dridan & Oepen, 2012). We study two interpretations of the tokenization
problem, namely the PTB and ERG tokenization schemes, as they both contribute
to the ERG parsing pipeline. We present unprecedented work on ERG lexical
tokenization and a finely-detailed study on PTB-like tokenization. Observing
variation in tokenization conventions across corpora and processing tasks, we
train and test multiple CRF sequence labelers and obtain substantial reductions
in tokenization error rate over state-of-the-art PTB tokenization tools. We
also augment our study with a domain adaptation perspective, determining
the effects of training on mixed gold-standard data sets and making tentative
recommendations for practical usage. In the ERG tokenization setup, we
also look at partial disambiguation by making available a token lattice to
downstream processing.

As our tokenization models improve over the state-of-the-art PTB tokenizers
and innovate on ERG tokenization, we already published our results in Fares et
al. (2013). This chapter presents an elaborated version of that work.
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3.1 Tokenization for ERG Parsing

The English Resource Grammar (ERG) defines its own tokenization conventions.
However, as shown in § 2.3, the standard parsing setup for the ERG relies on
a PoS tagging pre-processing stage, to provide the grammar with candidate
lexical categories for unknown words. For compatibility with external off-the-
shelf tools, the ERG adopts PTB-like tokenization at this stage. Afterwards, the
PTB-compliant tokens (dubbed initial tokens) are mapped to an ambiguous
lattice of internal tokens to conform to the ERG tokenization conventions.

While PTB tokenization is relatively well-understood (at least in comparison
to that of the ERG) ERG-like tokenization has not been investigated before. To
date, parsers working with the ERG either operate off an ambiguous full token
lattice (Adolphs et al., 2008) or assume idealized gold standard ERG tokenization
(Zhang & Krieger, 2011; Ytrestøl, 2011; Evensberget, 2012). Hence, ERG token
boundaries are typically determined as a by-product of syntactic analysis.
As we shall see later in this chapter, the ERG tokenization scheme shows a
stark contrast to ‘classic’ schemes (PTB-like), presenting many more token-
level ambiguities to the sequence labeler (reflecting use of punctuation and
multi-word lexical units).

In this work, we seek to determine to what degree CRF sequence labeling in
isolation scales to the ERG conception of the tokenization task, considering both
one-best and n-best decoding. We see at least two candidate applications of such
stand-alone ERG tokenization, viz. (a) to enable ERG lexical categorization (cf.
Chapter 4); and (b) to speed up parsing with the ERG, reducing or eliminating
tokenization ambiguity.

Finally, as PTB-like tokenization plays an essential role in ERG parsing,
we demonstrate that using sequence labeling for PTB tokenization scheme
as well improves over state-of-the-art results. Moreover, since the PTB-style
tokenization constitutes the basis for other broadly used resources, such as
the GENIA Treebank, we further expand our experiments to include different
corpora that variously adhere to the PTB tokenization scheme.

3.2 Formal Definition

Tokenization is the process of splitting a stream of characters into smaller,
word-like units for downstream processing; or in the definition of Kaplan (2005),
tokenization is breaking up “natural language text . . . into distinct meaningful
units (or tokens)”.

Given this definition, the concept of tokenization seems rather self-evident.
It is quite possible, however, that different types of downstream processing
may call for variation in tokenization, or different notions of ‘meaningful units’,
e.g. morphosyntactic analysis vs. full syntactic analysis1 (Chiarcos et al., 2009).

1One can argue that splitting ‘department store’ into two words is better for morphosyn-
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In fact, we observe that in the context of broad-coverage grammars such as
the ERG, very different views on tokenization can be motivated, including the
recognition of some types of multi-word expressions. These lead to more token
boundary ambiguities and, thus, make tokenization a task that is intricately
entangled with downstream analysis.

What is more, tokenization is sometimes interpreted to include some amount
of string-level normalization, such as the disambiguation of quote marks (into
opening and closing, or left and right delimiters). Assuming that the tokenizer
input does not make this distinction already, i.e. text using non-directional,
straight ASCII quotes only, such disambiguation can be performed with relative
ease at the string level—based on adjacency to whitespace—but not later on.

In our view, however, separating the two sub-tasks of tokenization explicitly
(boundary detection vs. text normalization) is a methodological advantage,
making it possible to experiment more freely with different techniques2. Quite
possibly owing to this somewhat diffuse interpretation of the task, there
has been very little work on machine learning for high-quality tokenization.
Throughout this thesis, therefore, tokenization concerns only token boundary
detection.

As mentioned in § 2.3, ERG parsing relies on, among other components, two
substantively different tokenization schemes. In the following we contrast the
PTB and ERG tokenization schemes, highlighting main design principles and key
differences.

3.2.1 PTB-Style Tokenization

According to the original PTB tokenization documentation3, the PTB-style
tokenization is “fairly simple”. The key principles in PTB-compliant tokenization
are:

• Whitespaces are explicit token boundaries.

• Most punctuation marks are split from adjacent tokens.

• Contracted negations are split into two different tokens.

• Hyphenated words and ones containing slashes are not split.

Even though PTB tokenization seems to be uncomplicated, not so many
standard NLP tools can accurately reproduce PTB tokenization from raw strings
(Dridan & Oepen, 2012).
tactic analysis, whereas the syntactic analyzer would prefer treating ‘department store’ as
a single token (Chiarcos et al., 2009).

2 Maršík and Bojar (2012) present a related but again interestingly different view, by
combining tokenization with sentence boundary detection to form one joint classification task,
which they approach through point-wise Maximum Entropy classification; their experiments,
however, do not address tokenization accuracy for English.

3http://www.cis.upenn.edu/~treebank/tokenization.html
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Among other problems (to which we will return in § 3.3), one recurring
issue in the PTB tokenization are sentence-final abbreviations, especially the
U.S. Observe how the preceding sentence, in standard typography, ends in
only one period. In the PTB, however, there seems to be a special treatment
for the ‘U.S.’ abbreviation, so whenever it occurs at the end of a sentence, an
extra period is added to that sentence; however, if for example, ‘etc.’ ends
the sentence no extra period would be added.

While the original PTB scheme is reasonably defined and broadly understood,
today there exist many variants. These often address peculiarities of specific
types of text, e.g. bio-medical research literature or user-generated content,
or they refine individual aspects of the original PTB scheme, for example the
treatment of hyphens and slashes.4 Variations on the PTB scheme are at times
only defined vaguely or extensionally, i.e. through annotated data, as evidenced
for example in resources like the Google 1T n-gram corpus (LDC#2006T13)
and the OntoNotes Initiative (Hovy et al., 2006).

The NLP community is moving toward producing—and processing—new
data sets other than the PTB. At the same time, much current work uses PTB
tokenization conventions with “some exceptions”.5 A consequence of these
developments, in our view, is the decreasing community agreement about
‘correct’ tokenization and, thus, greater variety in best practices and types
of input expected by downstream processing. For these reasons, we believe
that ease of adaptability to subtle variation (e.g. retraining) is of growing
importance, even in the realm of PTB-style tokenization.

3.2.2 ERG-Style Tokenization

The ERG assumes a quite different, and challenging, conception of tokenization
that diverges from PTB legacy in three key aspects. First, the ERG treats most
punctuation marks as pseudo-affixes to words i.e. commas, periods, quote
marks, parentheses, et al. are not tokenized off. The punctuation affixes are
treated akin to inflectional morphology, rather than as separate tokens that
attach syntactically. While Adolphs et al. (2008) offer a linguistic argument
for this analysis, we just note that it eliminates the dilemma presented by
periods in sentence-final abbreviations and in general appears to predict well
the interactions of whitespace and punctuation in standard orthography. As a
consequence, however, some punctuation marks are ambiguous between being
units of ‘morphology’ or syntax, for example colons and hyphens. Second,
unlike in the PTB conventions, hyphens (or dashes) and slashes in the ERG

4The 2008 Shared Task of the Conference on Natural Language Learning, for example,
produced variants of PTB-derived annotations with most hyphens as separate tokens, to
match NomBank annotation conventions of propositional semantics (Surdeanu et al., 2008).

5The 2012 Shared Task on Parsing the Web, for example, used portions from OntoNotes
4.0 which is tokenized with “slightly different standards” from the original PTB conventions
(Petrov & McDonald, 2012).
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introduce token boundaries, e.g. 〈open-, source〉 or 〈3, –, 4〉. Observe, however,
that the functional distinction between intra-word hyphens and inter-token
dashes projects into different tokenizations, with the hyphen as a pseudo-affix
in the first example, but the n-dash a separate token in the second. As both
functions can be encoded typographically as either a single hyphen or an
n-dash (- or –, respectively), the functional asymmetry introduces token-level
ambiguity. Third, the ERG treats contracted negations (e.g. ‘don’t’) as a single
token, contrary to the paradigm suggested in the PTB. Observing the sharp
grammaticality contrast between, say, Don’t you see? vs. ∗Do not you see?,
Adolphs et al. (2008) argue linguistically against tokenizing off the contracted
negation in these cases.

In addition to the three aspects just mentioned, the ERG introduces the
concept of ‘lexical tokens’ (or multi-word expressions) that constitutes a major
challenge in ERG tokenization.

Multi-word expressions Multi-word expressions (MWEs), in the definition
of Sag et al. (2002), are “idiosyncratic interpretations that cross word boundaries
(or spaces)”

The ERG includes a lexicon of some classes of multi-word expressions, ‘fixed’
and ‘semi-fixed’ MWEs according to the classification of Sag et al. (2002). The
ERG lexicon contains, most notably, so-called ‘words with spaces’ (e.g. 〈ad, hoc〉
or 〈cul, de, sac〉), which are ‘fixed’ MWEs that disallow variability, meaning
that expressions like 〈ad, hoc〉 can be externally modified (very ad hoc) but
not internally (∗ad very hoc). Other instances of ERG MWEs include proper
names with syntactic idiosyncrasies (〈New, Year’s, Eve〉, for example, can be a
temporal modifier by itself, i.e. without a preposition), multi-word prepositions
and adjectives (e.g. 〈as, such〉 or 〈laid, back〉), and of course ‘singleton’ words
split at hyphens (e.g. 〈e-, mail〉 or 〈low-, key〉).

It is noteworthy that MWEs are quite frequent in the ERG; almost 10% of
the ERG1212 lexicon are multiword lexical entries6.

Taken together, these conventions make ERG-style tokenization a more
intricate task, calling for a certain degree of context-aware disambiguation and
lexical knowledge.

3.2.3 Tokenization as a Sequence Labeling Problem

The interpretations of tokenization as a sequence labeling problem might vary
on five different dimensions, some are specific to the tokenization task itself,
others are common to various machine learning problems. In general, to recast
tokenization as a sequence labeling problem we need to define:

6The ERG1212 (introduced before) is the 2012 release of the ERG and it includes a hand-
built lexicon of some 38,500 lemmata (i.e. uninflected stems).
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1. Target tokenization scheme The tokenization conventions which
the model is expected to learn. This can be any coherently defined or
practised tokenization scheme such as PTB or ERG.

2. Basic processing unit The smallest unit that can make up a single
token, or said differently, the instances the sequence labeling model is
supposed to label. We will elaborate more on this below.

3. Tokenization labels The set of classification labels. We perceive the
tokenization of an input as a sequence of binary classifications, hence we
define two classification labels, namely ‘SPLIT’ and ‘NONSPLIT’.

4. Sequence labeling models and features In the tokenization task as
such, there isn’t any restriction on the type of sequence labeling algorithm
one can employ.

5. Data split The train-development-test data split.

The core of the tokenization task is to split raw untokenized text into
smaller units. To identify the potential splitting points, we need to first
identify the atomic units that cannot be further split.

One can look at ‘tokens’ from two perspectives: First, what might be a
token separator or what is not a token. Second, what constitutes a token. In the
what-is-not-a-token view, there is one main approach that is to define a set of
characters as token separators such as whitespace, period, and comma. While
in the what-is-a-token perspective, we can distinguish at least two approaches.

First, the character-based method where each character in the raw string is
a candidate token (thus followed by a candidate tokenization point). While this
is the common practice for word segmentation of CJK (Chinese, Japanese, and
Korean) languages which have to varying degrees logographic writing systems,
this is probably not suitable for languages with phoneme-based writing system
where single characters are typically representing basic significant sounds rather
than a word, morpheme or semantic unit. An alternative approach would
be to group the characters into different character classes and, accordingly,
define the concept of sub-tokens where each one consists of a sequence of
homogeneous characters belonging to the same character class.

In this approach we define the candidate tokenization points as the points
between each pair of sub-tokens, and a token consists of one or more sub-tokens.
The rationale behind this notion of character classes is that a consecutive
sequence of homogeneous characters is most likely to constitute one single
token and should not be further split. Table 3.1 lists all the character classes
we define for English tokenization. If a character does not fall under any of
the classes in Table 3.1, it would be classified as ‘other’.

More concretely, a word like ‘well-educated’ consists of three sub-tokens:
‘well’, ‘-’ and ‘educated’, where these three sub-tokens belong to three charac-
ter classes, respectively: ‘alpha’, ‘hyphen’ and ‘alpha’. Hence, the candidate
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Table 3.1: The character classes
Class Description
alphaC Alphabetical characters with the initial one capitalized
alpha Alphabetical characters
num Numerical characters
H Hyphen
C Comma
D Dot
L Colon
SL Semicolon
OP Open parenthesis
CP Close parenthesis
SQ Single quote
DQ Double quote
D Dash
FS Forward slash
BS Backward slash
OQ Open quote

tokenization points are: (1) between alpha and hyphen, (2) between hyphen
and alpha, well¦-¦educated.

3.3 PTB-Style Tokenization

First, we carried out in-domain and out-of-domain tests of our machine learning
based tokenizers with the PTB-style tokenized data.

For the training of the PTB model, we followed the standard data split
used in part-of-speech tagging experiments. We train our model on PTB WSJ
sections 0 to 18, improve it on sections 19 to 21 and test it on sections 22 to
24. Moreover, we extract the ‘gold-tokens’ from the treebank and align them
with raw strings provided with the 1995 release of the PTB (LDC#1995T07)7.

Assuming the gold sentence boundaries, we split each sentence into a
sequence of sub-tokens as defined in § 3.2.3, hence the classifier’s task is to
decide whether to join adjacent sub-tokens or keep them split. However, our
notion of character classes as such doesn’t cover all possible token boundaries
in the PTB conventions. More concretely, according to the PTB tokenization
conventions the word ‘cannot’ must be split into two tokens, ‘can’ and ‘not’,
but our character classes approach would recognize ‘cannot’ as a single sub-
token, eliminating the possibility of a split within a homogenous sequence of
characters. We see a similar problem with contractions in the PTB, but we

7We are indebted to Rebecca Dridan for sharing her version of the ‘raw’ WSJ text, aligned
to sentences from the PTB for gold-standard tokenization.
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Table 3.2: Features used for PTB tokenization classifiers — W: word’s surface
form, Space: followed by space, CCi: character class, Len: surface form length,
FC: first character, LC: last character; †: Bigram features, ‡: Unigram and
bigram features, unmarked features are unigram features.

Feature Feature Feature
Wi Wi & Wi−1 & Wi−2 & Wi−3 Wi+1 & CCi+1‡
Wi+1‡ Wi & Wi+1 & Wi+2 & Wi+3 FCi
Wi+2‡ Spacei† LCi
Wi+3‡ Wi & Spacei FCi & FCi+1
Wi−1‡ Spacei & Spacei+1† FCi & FCi−1
Wi−2‡ Spacei & Spacei−1† LCi−1 & FCi
Wi−3‡ CCi‡ LCi & FCi+1
Wi & Wi+1 & Wi+2 CCi & CCi+1‡ Leni
Wi & Wi−1 & Wi−2 CCi & CCi−1‡ CCi & Leni
Wi & Wi−1 & Wi+1 Wi−1 & CCi−1‡ Wi & CCi & Leni†

believe this is a restricted phenomenon peculiar to PTB tokenization conventions.
Extra regular rules were added to recognize the sub-tokens in these special
cases8.

As listed in Table 3.2, we construct a set of 30 features for each sub-token
exploiting their lexical and orthographical information as well as their local
context in a bidirectional-window of seven sub-tokens (denoted by Wi with
i ∈ [−3 .. 3]). The following is an example sentence with sub-token indices
below and the corresponding character classes above each unit, respectively.

alphaC︷︸︸︷
PC︸ ︷︷ ︸

1

alpha︷ ︸︸ ︷
shipments︸ ︷︷ ︸

2

alpha︷︸︸︷
total︸︷︷︸

3

alpha︷ ︸︸ ︷
some︸ ︷︷ ︸

4

dollar︷︸︸︷
$︸ ︷︷ ︸
5

num︷︸︸︷
38︸︷︷︸
6

dot︷︸︸︷
.︸︷︷︸
7

num︷︸︸︷
3︸︷︷︸
8

alpha︷ ︸︸ ︷
billion︸ ︷︷ ︸

9

alpha︷ ︸︸ ︷
world︸ ︷︷ ︸

10

hyphen︷︸︸︷
-︸ ︷︷ ︸

11

alpha︷ ︸︸ ︷
wide︸ ︷︷ ︸

12

dot︷︸︸︷
.︸︷︷︸

13

3.3.1 Results and Error Analysis

To allow a fair comparison with other tokenization tools, we measure tokeniza-
tion performance on the sentence level, i.e. will consider a sentence erroneous
when it contains at least one token mismatch against the gold standard.9

Testing our PTB model on the last three sections of PTB WSJ led to an
error rate of 0.93%. As a reference point we compared our system with
the best-performing set of rules from Dridan and Oepen (2012) (henceforth

8These rules are based on the sed script provided by the PTB; see http://www.cis.upenn
.edu/~treebank/tokenizer.sed

9Thus, unless explicitly said otherwise, all experimental results we report in this chapter
indicate sentence-level metrics i.e. full-sentence accuracy or full-sentence error rate.
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3.3. PTB-Style Tokenization

the REPP tokenizer). Evaluating their rules on the last three sections of PTB
resulted in 1.40% error rate.10

Examining the errors of our PTB model revealed that about 45% of the
sentence mismatches are due to tokenization inconsistencies within the PTB
(gold-standard errors), while the rest (55%) are classification errors. More
precisely, almost 30% of the PTB model’s ‘errors’ are to be blamed on the
‘U.S.’ idiosyncrasy in the PTB (discussed in § 3.2.1). Inconsistencies in splitting
hyphenated words are the source of another 4% of the total error rate, for
example ‘trade-ethnic’, in the following sentence, is split into three tokens
in the gold-standard in contrast to the PTB tokenization scheme.

“But too often, these routines lack spark because this sitcom, like all sitcoms,
is timid about confronting Mr. Mason’s stock in trade-ethnic differences.”

Yet another problem with hyphens in the PTB are cases like “[. . . ] on energy-,
environmental- and fair-trade-related [. . . ]” where the hyphens are separated
from ‘environmental-’ and ‘energy-’, while ‘fair-trade-related’ is cor-
rectly kept all together; this case shows that it is impossible to exactly replicate
the PTB tokenization. Other types of inconsistencies, such as not splitting off
some punctuation and splitting periods from acronyms (e.g. ‘Cie.’, ‘Inc.’,
and ‘Ltd.’) sum up to almost 11% of the errors.

Interestingly enough, our PTB model shares 77% of the errors with the REPP
tokenizer (apart from ‘U.S.’-related mismatches).

Finally, to build a better understanding of the non-trivialty of the PTB
tokenization task, we present a unigram baseline model which assigns to each
sub-token its most frequent label and for unseen sub-tokens the most frequently
occurring label in the training data. This method results in merely a 40.04%
sentence-level accuracy.

In Figure 3.1 we observe the CRF learner’s in-domain behavior with increas-
ing amounts of training data. We see that the high accuracy can be established
with relatively small amount of training data, and no steep improvement in
accuracy thereafter, which can be partially due to the noisy (inconsistent)
annotations in the PTB.

3.3.2 Domain Variation

To further validate our system, and also to investigate the robustness of ML-
based and rule-based approaches for tokenization, we test the two systems on
a different genre of text, the Brown Corpus.11 Although the Brown annotations

10We had to replicate the experiments of Oepen & Dridan because the results reported in
Dridan and Oepen (2012) are against the full PTB.

11For this experiment, we again could rely on data made available to us by Rebecca
Dridan, produced in a manner exactly parallel to her WSJ test data: a raw-text version of the
Brown Corpus was aligned with the gold-standard sentence and token boundaries available in
the 1999 release of the PTB (LDC#1999T42).
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Figure 3.1: The learning curve of the PTB model (tested on PTB WSJ).

strictly follow the PTB tokenization scheme, there are many sentences where
the mapping from the raw text to the tokenization in the treebank cannot be
established, mainly because of notorious duplication of punctuation marks like
semicolons and question and exclamation marks in the PTB annotations. As
both tokenizers, ours and REPP, would be equally affected by these artifacts,
we excluded 3,129 Brown sentences showing spurious duplicates from our
evaluation.

In this experiment, the ML-based approach (i.e. our PTB model trained with
WSJ sections) outperforms the REPP tokenizer by a good margin: it delivers a
sentence error rate of 0.48%, contrasting with 2.87% for the REPP rules of
Dridan and Oepen (2012). While for the ML-based tokenizer, performance
on Brown is comparable to that on the WSJ text, the REPP tokenizer appears
far less resilient to the genre variation. Although speculative, we conjecture
that REPP’s premium performance in our WSJ tests may in part be owed to
tuning against this very data set, as discussed in Dridan and Oepen (2012)
and evidenced by the explicit coding for sentence-final ‘U.S.’, for example.

Furthermore, we experiment with tokenizing out-of-domain texts from
the GENIA Corpus. Using 90% of its sentences for training and the rest for
testing, we carry out a new set of experiments: First, testing ‘pure’ PTB- or
GENIA-only models on GENIA text; second, training and testing adapted models
combining the PTB with either a small portion of GENIA (992 sentences; dubbed
PTB+GENIA(1k)), or the entire GENIA (dubbed PTB+GENIA). The results of these
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Table 3.3: The results of the GENIA experiments.

Model Error rate
REPP Tokenizer 8.48%
PTB 25.64%
GENIA 2.41%
PTB+GENIA(1k) 3.36%
PTB+GENIA 2.36%

Figure 3.2: Learning curve of retraining the PTB model on GENIA corpus
(tested on GENIA).

experiments are presented in Table 3.3 together with the result of testing the
REPP tokenizer on GENIA.

From the results above, we see that the rule-based REPP tokenizer outper-
forms the unadapted PTB model. However, we also see that domain adaptation
works quite well even with limited in-domain annotation. We further con-
trast the learning curve of the adapted model with that of the PTB in-domain
experiment (see Figure 3.2). The extended training with more in-domain
annotation continues to improve the tokenization accuracy, contributing to the
best performing tokenizer using all available annotations.
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3.4 ERG-Style Tokenization

For experimentation with ERG-style tokenization, we rely on the Redwoods and
DeepBank Treebanks introduced in § 2.6. However, over the course of doing
these experiments two versions of DeepBank were available, viz. version 0.9
and version 1.0. Using the Redwoods and DeepBank v0.9, we deployed the
standard splits of the treebank (as published with the ERG), for 55,867 sentences
of training data, and 5,012 and 5,967 sentences for development and testing,
respectively. Additionally, we carried out a ‘pure’ DeepBank experiment with
only DeepBank v1.0 data (we will come back to the data split later when we
present the results).

Some of the Redwoods texts include residual markup, which the ERG in-
terprets, for example using italics as a cue in recognizing foreign-language
phrases in Wikipedia. To focus on the ‘pure’ linguistic content of the text,
our experiments on ERG-style tokenization actually start from a pre-tokenized,
markup-free variant recorded in the treebank, essentially the result of a very
early stage of parsing with the ERG (Adolphs et al., 2008). As discussed in
§ 2.3, in ERG terminology, this tokenization is dubbed initial tokenization, and
it actually follows quite closely the PTB scheme. During lexical analysis, the
ERG parser combines the ‘token mapping’ rules of Adolphs et al. (2008) with
lexical look-up in the grammar-internal lexicon to arrive at the ERG-internal to-
kenization that we characterized in § 3.2.2 above (dubbed lexical tokenization).
In standard ERG parsing, this mapping from initial to lexical tokenization is a
by-product of full syntactic analysis only, but in the following experiments we
seek to disambiguate lexical tokenization independent of the parser.

As such, we train a binary classifier (ERG model henceforward) to reproduce
ERG-like tokenization (lexical tokens) starting from PTB-compliant initial tokens.
As noted in § 3.2.2 above, however, mapping from initial to lexical tokens can
require additional candidate splitting points around hyphens and slashes.
Somewhat parallel to our notion of sub-tokens in the PTB universe (cf. § 3.3),
we employ three heuristic rules to hypothesize additional candidate token
boundaries, for example breaking a hyphenated initial token ‘well-educated’
into ‘well-’ and ‘educated’.12

Green et al. (2011) study multi-word expression (MWE) identification using
syntactic information and argue that MWEs cannot in general be identified
reliably by “surface statistics” only. We largely agree with this point of view,
but note that the task of ERG tokenization (as sequence labeling) only comprises
a very limited range of MWEs, viz. multi-token lexical entries (see § 3.2.2 above).

12Our three splitting heuristics are actually borrowed literally from the ‘token mapping’
rules that come with the ERG (Adolphs et al., 2008). We also experimented with the introduc-
tion of sub-token splits points based on character classes, as in our PTB-style experiments, but
found that—given PTB-style initial tokens as our starting point—the more specific heuristics
targeting only hyphens and slashes led to fewer candidate boundaries and mildly superior
overall results.
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Table 3.4: Features used for ERG tokenization classifiers — W: word’s surface
form, Space: followed by space, CCi: character class, Len: surface form length,
FC: first character, LC: last character; † Bigram features, ‡: Unigram and
bigram

Feature Feature Feature
Wi‡ Spacei† Wi+1 & CCi+1‡
Wi+1‡ Wi & Spacei‡ FCi‡
Wi+2‡ Spacei & Spacei+1† LCi‡
Wi+3‡ Spacei & Spacei−1† FCi & FCi+1
Wi−1‡ CCi‡ FCi & FCi−1
Wi−2‡ CCi & CCi+1‡ LCi−1 & FCi
Wi−3‡ CCi & CCi−1‡ LCi & FCi+1
Wi & Wi+1 & Wi+2 Wi−1 & CCi−1‡ Leni
Wi & Wi−1 & Wi−2 Wi−1 & Leni−1 CCi & Leni‡
Wi & Wi−1 & Wi+1 Wi+1 & Leni+1 Wi & CCi & Leni†
Wi & Wi−1 & Leni & Leni−1‡

In analogy to the (practically) circular interdependencies observed between
sequence labeling vs. full syntactic analysis for the task of lexical category
disambiguation (i.e. part-of-speech tagging), we hypothesize that the arguments
of Green et al. (2011) do not apply in full to our ERG tokenization experiments.

3.4.1 Results and Error Analysis

Our ERG tokenization model deploys the set of features presented in Table 3.4,
complemented by a couple of additional features recording the length, in
characters, of adjacent words.

The accuracy of the ERG model, trained, tuned, and tested on the Redwoods
and DeepBank v0.9 data sets and splits described above, is 93.88%, i.e.
noticeably below PTB-style tokenization performance, but still rather decent
at the level of full sentences. Looking at tokenization mismatches of the ERG
model showed that 41% of the errors involve MWEs unseen in training, such
as ‘a priori’. The rest of the errors contain ambiguous multi-word lexical
units e.g. ‘as well as’, which should sometimes be split and sometimes not.
Another source of errors are hyphenated multi-word lexical units, such as
‘south-west’, which our ERG model regards as a hyphenated word and hence
wrongly splits into two tokens.

To try and compensate for the higher error rate in ERG tokenization, we
investigate possibilities and trade-offs in ambiguous tokenization, i.e. apply
n-best (or list Viterbi) CRF decoding to generate lattices representing n-best
lists of token sequences;

The results in Table 3.5 suggest that quite small values of n lead to
substantial accuracy gains, with 5-best decoding reaching sentence accuracies
approaching our PTB results.
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Table 3.5: N-best list for ERG-style tokenization

N Accuracy
1 93.88%
2 97.97%
3 98.77%
4 99.02%
5 99.16%

As discussed above, at least for the purpose of pruning the search space of
the full ERG parser, n-best decoding offers attractive flexibility in trading off
accuracy and efficiency, abstractly parallel to work in interweaving sequence
labeling for lexical category assignments and structured prediction for syntactic
analysis (e.g. Curran et al., 2006; Yoshida et al., 2007).

To gauge cross-domain sensitivity in these results (over the full, relatively
diverse Redwoods Corpus), we train and test our ERG model on the WSJ portion
of the data only. Using sections 0 – 13 to train, and sections 14 and 15 to test,
this WSJ-only ERG model delivers a moderately improved 94.06% per-sentence
accuracy; its performance in 2-best mode is 98.79%, however, substantially
better than the more general, cross-domain ERG model.

Finally, as more training data became available, DeepBank v1.0, we train
and test our WSJ-only ERG model again, but this time training on sections
00–20 from DeepBank and testing on section 21. The accuracy improves to
94.77% with one-best decoding suggesting that with more training data better
results might be attained.

3.5 Summary

In this chapter we have presented an innovative data-driven approach towards
tokenization. We have shown that our sequence labeling models substantially
outperform state-of-the-art rule-based systems for PTB-like tokenization. Fur-
thermore, we have shown that domain-adaptable tokenization models can
achieve very high accuracies, and again, outperform rule-based systems.

In the ERG tokenization setup, we have shown that multi-word lexical units
constitute a major challenge. However, more training data is expected to
improve the model’s performance.

While a certain degree of feature engineering has been invested during our
experiments, we believe that further empirical improvements can be made in
the design of the sequence labeler, e.g. using a constrained decoder (informed
by the ERG lexicon) for the sequence labeler. Also, extra labels could be
introduced in the sequence labeler to achieve certain rewriting operations in a
sense similar to those of a finite-state transducer, e.g. adding special a label to
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replicate the PTB ‘U.S.’ idiosyncrasy. These remain to be investigated in future
work.

Examining the generalizations of our models and mismatches against gold-
standard annotations, already has proven a useful technique in the identification
of inconsistencies and errors within existing resources. Hence, we also see a
possible perspective on this work as a feedback mechanism to resource creation,
i.e. error detection in annotated corpora.

Finally, we have already published our tokenization experiments results in
Fares et al. (2013), and for replicability and general uptake, the tokenization
toolkit and models will be made available as open source software.
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Chapter 4

Lexical Categorization

Lexical categories are very effective features for parsers, as they can be used to
annotate the input of the parser allowing it to treat unknown words according
to their lexical categories. Additionally, lexical categorization information can
be exploited to prune parse forests or disambiguate the output of the parser (cf.
Chapter 5). Other applications of lexical categorization include noun phrase
chunking (Shen & Joshi, 2003), semantic role labeling (J. Chen & Rambow,
2003) and statistical machine translation (Hassan et al., 2007).

In this chapter, we present a selection of experiments on the use of CRFs
to learn the ERG lexical categories. First, we define lexical categories in the
ERG realm. Then, we sketch out the dimensions of our experiments. We
closely study which features are most useful in training a sequence labeling
model for lexical categorization. To gauge the accuracy vs. granularity view,
we experiment with using only the ERG major syntactic categories, a very
coarse-grained generalization of lexical categories. Finally, as CRFs are very
expensive to train, we suggest an efficient division of labor through training
eleven separate, but interacting, models to learn the ERG lexical types.

4.1 ERG Lexical Categories

In Chapter 2 we introduced lexical categories in general; in this section, however,
we focus on the definition of lexical categories in the realm of the HPSG-based
ERG. As evidenced by earlier studies, Toutanova et al. (2002); Dridan (2009);
Ytrestøl (2012) inter alios, defining lexical categories in the ERG, and HPSG in
general, is not as clear-cut as in the LTAG and CCG formalisms1. Thus, the ERG
allows flexible design choices in defining lexical categories, e.g. balancing the
accuracy and linguistic granularity, or as Dridan (2009) refers to it, balancing
‘predictability’ and ‘usefulness’. In the following we introduce these choices by
explaining the ERG grammar components that can make up lexical categories.

1In LTAG the so-called elementary trees directly correspond to the concept of supertags,
and so do the categories of CCG.
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(1) think_of := (2) v_pp_e_le &
ORTH (3)〈“think”〉

SYNSEM

 LKEYS
[

–COMPKEY (4) _of_p_sel_rel
KEYREL.PRED (5) “_think_v_of_rel”

]
PHON.ONSET (6) con




Figure 4.1: A lexical entry in the ERG lexicon – think_of

Lexical Entry The lexical entry constitutes the basic unit within the ERG
lexicon. Figure 4.1 shows an example of a lexical entry from the lexicon of
the 2012 version of ERG. Each lexical entry consists of: (1) an identifier (2)
a lexical type (3) a stem (4) an optional selectional relation (5) a semantic
predicate and (6) phonetic information.

Lexical Type The lexical type (letype) encodes some linguistic information
about the lexical entry, such as its syntactic category and subcategorization
frame. All lexical types in the ERG consist of four fields as follows:

〈major-syntactic-cat〉_〈subcategorization〉_〈description〉_le

Where:

1. Major syntactic category (MSC): one of eleven broad lexical categories,
such as verb, noun, adjective and adverb.

2. Subcategorization: describes the possible arguments, specifiers or com-
plements, for which a lexical entry selects.

3. Description: an optional field that provides annotations of the finer-
grained distinctions among types with the same major syntactic category
and complement selection (subcategorization frame).

4. le: a constant suffix to facilitate regular-expression searches within the
grammar source files.

We can now explain the lexical type v_pp_e_le in Figure 4.1: the first field
(v) describes a verbal lexical entry, the second field (pp) means that this lexical
entry selects for a prepositional phrase complement, and the third field (e)
specifies that the preposition (pp, in the second field) is semantically empty.

It is worth observing that the lexical types in the ERG describe lexical
entries, not words; or said differently, the example in Figure 4.1 represents all
inflected forms of the verb ‘think’, such as ‘thought’ and ‘thinks’.
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Table 4.1: Lexical categories in Dridan (2009) — Note that Dridan (2009) used
the term POS instead of MSC
Lexical Category Tagset Size Description
letype+sel+morph 1217 Lexical type, selectional relation &

morphological rules
letype+sel 803 Lexical type & selectional relation
letype+morph 996 Lexical type & morphological rules
letype 676 Lexical type
subcat+morph 254 Subcategorization & morphological

rules
subcat 110 subcategorization
MSC+morph 36 Major syntactic category & morpho-

logical rules
MSC 13 Major syntactic category

Lexical Item As just mentioned, ‘think’, ‘thought’ and ‘thinks’ all map to
the same lexical entry (in Figure 4.1). However, in the morphological analysis
phase each form triggers different lexical rules (morphological and punctuation
‘inflection’ rules) which are applied to the lexical entry to form the so-called
lexical item. Hence, different lexical rules are combined with the lexical entry
to represent each of the inflected forms; the lexical item of ‘thought’, for
example, includes a lexical type, v_pp_e_le, and a lexical rule, v_pst_olr
which indicates that ‘thought’ is a verb in the past tense.

Now that we have presented possible definitions of lexical categories in
the ERG, we can review the choice of ERG lexical categories in previous studies.
Toutanova et al. (2002) used the ERG lexical entries (i.e. their unique identifier,
(1) in Figure 4.1) as lexical categories in an approach for parse disambiguation.2
This resulted in a very fine-grained tagset of 8,000 lexical entries, which was
the size of the ERG lexicon at the time of their study. If we were to opt for
the same choice of lexical categories, our tagset would consist of 38,500 lexical
entries (the size of the lexicon in ERG1212).

Dridan (2009) defined eight degrees of granularity in lexical categories over
the 2009 version of the ERG, summarized in Table 4.1, where the tagset size
here reflects the number of tags seen in the training data. First, she identified
four types of lexical categories based on syntactic information, letype+sel,
letype, subcat and MSC. Each ‘syntactic’ granularity, then, can be combined
with morphological information +morph (i.e. can be used with and without
adding morphological rules) which leads to eight types of lexical categories.
Observe that in Dridan (2009) the number of lexical types seen in the training
data is 676.

Ytrestøl (2012) found that lexical types (as lexical categories) provide
2Toutanova et al. (2002) used the term lexical labels for lexical entries.
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the “best possible balance” between restricting the parser’s search space and
achieving high supertagging accuracy. In the 2011 version of the ERG, which
Ytrestøl (2012) used, the set of lexical types consists of almost 1,000 types.3

4.2 Experimental Setup

In this thesis, we define two main granularities of lexical categories. First, the
Lexical Types (letype) a very fine-grained set of lexical categories. Second,
the Major Syntactic Categories (MSC) a very coarse-grained set of lexical
categories. Experimenting with such starkly different tagsets allows defining:
(a) the relation between linguistic granularity and accuracy; (b) the scalability
of CRFs to large-scale tagging tasks; and (c) the impact of linguistic granularity
on restricting the parser search space (in Chapter 5).

Somewhat parallel to our tokenization experiments (§ 3.2.3), we identify
five dimensions on which ERG lexical categorization experiments might vary:

1. Grammar: The grammar version from which the lexical categories
are derived.

2. Observations: The instances (or minimal processing units) to which
the labeling model is supposed to assign lexical categories.

3. Lexical categories: The set of labels (tagset), which could be the
set of: lexical entries, lexical types, lexical items or major syntactic
categories.

4. Learning model: The machine learning model and the feature tem-
plate used to learn the lexical categories.

5. Data set: The train, development and test data sets.

In order to better understand our experimental setup, Table 4.2 provides
a comparison between the works of Dridan (2009), Ytrestøl (2012) and ours,
based on the five dimensions just described.

Observe that Dridan (2009) simplified the problem by choosing initial
tokens (PTB-compliant) instead of lexical tokens (ERG-compliant). In her setup,
a multi-word lexical token such as ‘at least’ would be split into two initial
tokens ‘at’ and ‘least’. Then, she would assign the adverbial lexical type of
‘at least’ to the preposition ‘to’ and the adverb ‘least’, which is potentially
confusing to the tagger.

3Ytrestøl (2012) didn’t specify whether 1,000 is the number of lexical types in the ERG
version he was using or the number of lexical types seen in the training data. Nonetheless,
we speculate that almost all lexical types in the ERG would be seen in his training data set
which contained 140 million words.
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Table 4.2: A comparison between Dridan (2009), Ytrestøl (2012) and our work

Dridan (2009) Ytrestøl (2012) Our experiments
Grammar ERG 2009 ERG 2011 ERG 2012
Observations Initial tokens Lexical tokens Lexical tokens
Lexical categories Table 4.1 letype letype & MSC
Learning model HMM & MaxEnt MaxEnt & SVM CRFs
Data set Redwoods 2009 Redwoods 2011

WikiWoods
DeepBank

Train set (# tokens) 157,920 141,893,437 656,507

Besides the differences we see in Table 4.2, each of the three studies focuses
on one aspect of the problem, i.e. varying one of the five dimensions while
keeping the rest constant. Dridan (2009) examined the effect of varying the size
of the tagset on the syntactic analyzer. Ytrestøl (2012) studied increasing the
training data size in order to improve tagging accuracy. As both Dridan (2009)
and Ytrestøl (2012) used ready-made taggers, they did not look into feature
engineering for lexical categorization. In this project, therefore, we closely
investigate the efficacy of various features in learning ERG lexical categories.

The following section details our experiments with developing various
feature templates to learn the ERG lexical types.

4.3 Lexical Type Experiments

Training a CRF model requires specifying, among other variables, the data,
feature and label sets. Throughout all the lexical categorization experiments,
we use DeepBank v1.0, sections 0 – 19 for training, section 20 for development
and section 21 for testing. We extract the data from the so-called DeepBank
profiles (which include, inter alia, the output of the ERG parsing pipeline4).
The data files contain one word per line, with sentences separated by empty
lines (newlines). Each lexical token is represented by its sentence ID, surface
form (Wi), PTB PoS tag (Ti) and lexical category. The PTB PoS tags, however,
are assigned to initial tokens (cf. § 2.3), which means that some lexical tokens
might have more than one PoS tag or none at all. On the one hand, multi-word
expressions and contracted negations consist of more than one initial token,
hence they have more than one PoS tag. On the other hand, a hyphenated
word is one initial token that maps to two lexical tokens, hence an extra PoS
tag is needed. In cases where many initial tokens map to one lexical token, we
concatenate all the PoS tags of the initial tokens. However, when one initial
token maps to many lexical tokens, we use the PoS tag of the one initial token
for all the lexical tokens.

4For more information about the ERG profiles http://moin.delph-in.net/ItsdbProfile
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Figure 4.2: The ERG analysis of “Sun-filled Mountain View didn’t collapse.”

We clarify the data extraction and representation through an example.
Figure 4.2 shows the ERG analysis of the sentence “Sun-filled Mountain View
didn’t collapse.” The pre-terminals in the derivation tree (Figure 4.2) are
lexical entries, and above them are the lexical rules of each token, e.g. ‘filled’
has the lexical entry fill_v1 and a passivization lexical rule v_pas_odlr. The
lexical types, however, are not apparent in the derivation tree and are extracted
from the lexicon.

Observe that none of the tree leaves correspond to PTB initial tokens,
Table 4.3 shows the differences in tokenization and, accordingly, the mapping
of PoS tags from initial tokens to lexical tokens; e.g. ‘didn’t’ is one lexical
token that corresponds to two initial tokens ‘did’ and ‘n’t’, hence it gets two
PoS tags, ‘VBD’ and ‘JJ’.

Since a lexical type does not encode information about the punctuation
marks attached to the token (cf. § 4.1), we normalize all lexical tokens by
stripping off the following punctuation marks: . , : ; ! ?. Furthermore, in
order to reduce the number of word types (by word types we mean unique
word forms) we convert all numerals to ‘9’, e.g. 2013 is rewritten as 9999.

The second aspect of training a CRF model is defining the label set. The
ERG1212 contains 1,092 lexical types5, however only 879 of these lexical types
occur in our training set. Furthermore, we convert all generic lexical types,
within the DeepBank, to their corresponding native ones, hence decreasing the

5See the Lexical Type Database at http://cypriot.stanford.edu/~danf/cgi-bin/ERG
_1212/list.cgi
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Table 4.3: Example of initial to lexical tokens mismatch — Note that the PoS
tags in this example are automatically assigned.

Sun-filled Mountain View didn’t collapse.
PTB tokens Sun-filled Mountain View did n’t collapse .
ERG tokens Sun- filled Mountain View didn’t collapse.
PTB PoS tags NNP NNP NNP VBD JJ NN .
PoS feats. NNP NNP NNP+NNP VBD+JJ NN+.

number of lexical types in the training set to 857. The DeepBank was created
by automatically parsing the WSJ text, and then manually correcting and
disambiguating the output of the parser. One side effect of this methodology,
in the ERG realm, is that unknown words would be assigned so-called ‘generic
lexical entries’ (in contrast to known words which are assigned ‘native lexical
entries’). The generic lexical entries are essentially underspecified lexical entries
instantiated to fill the gaps in the lexical chart, i.e. fill the input positions
for which no native entries were found. AppendixA lists the mapping rules
we apply in the conversion process. Note that a similar normalization was
performed in the work of Ytrestøl (2012), whereas Dridan (2009) normalized
only four or so generic lexical types.

Now we have our data and label sets ready, but we still need to define
the feature set. In the following we introduce a series of feature ablation
experiments, where we identify sets of candidate features and then test with
some combinations of these sets to arrive at the highest accuracy of lexical
types assignment.

4.3.1 Feature Ablation Study

As a result of preliminary experiments we define 27 candidate features grouped
in four sets based on linguistic criteria as follows:

• Lexical features: encode the surface form of a lexical token in the context
of up to four words, in addition to the target word.

• Morphosyntactic features: encode the PTB part-of-speech tags in the
context of up to six words.

• Morphological features: encodes the prefixes and suffixes of the target
word up to five characters.

• Orthographic features: encode information such as the capitalization of
the target word and whether or not it ends with a hyphen.

Table 4.4 presents our 27 features, where Wi with i ∈ [−2 .. 2] denotes
the surface form of the ith token relative to the current position, Ti with
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Table 4.4: Candidate features to learn the ERG lexical types
Lexical Morphosyntactic Morphological Orthographic
Wi Ti 5-prefixi Capi & Wi
Wi−1 Wi & Ti 5-suffixi Capi & Cap i−1
Wi+1 Ti & Ti+1 4-prefixi Hyphi
Wi & Wi−1 & Wi−2 Ti & Ti−1 4-suffixi
Wi & Wi+1 & Wi+2 Ti & Ti+2 3-prefixi

Ti & Ti−2 3-suffixi
Ti & Ti+3 2-prefixi
Ti & Ti−3 2-suffixi
Ti & Ti+1 & Ti−1 1-prefixi

1-suffixi

Table 4.5: Feature ablation experiments — α trained using 8 threads, β trained
using 4 threads and γ trained using 10 threads

Model Accuracy Features size GB Training time hours
L 90.37% 6.83 15.24γ
MS 90.57% 0.68 15.55γ
MS+O 90.73% 0.92 16.77α
L+O 91.35% 7.06 18.46α
MS+M 91.37% 1.17 15.59α
L+M 92.09% 7.31 17.64γ
L+MS 92.52% 7.52 20.14α
L+M+O 92.33% 7.55 17.45γ
L+MS+O 92.70% 7.75 17.11γ
L+MS+M 93.48% 8.00 16.58γ
L+MS+M+O 93.54% 8.24 49.08β

i ∈ [−3 .. 3] denotes the PTB PoS tag of the the ith token, ‘Cap’ and ‘Hyph’
are binary features which refer to ‘Capitalized’ and ‘Ends with a hyphen’,
respectively. All of the features in Table 4.4 are unigram features, bigram
features, as we shall see in § 4.3.3, are very expensive to deploy.6

To study the effect of each feature set, we train eleven models on combi-
nations of these feature sets noting differences in accuracy, training time and
main memory (RAM) usage.7 Table 4.5 shows the results of testing the eleven
models on DeepBank section 20, where ‘L’, ‘MS’, ‘M’ and ‘O’ are ‘lexical’,
‘morphosyntactic’, ‘morphological’ and ‘orthographic’, respectively.

6As described in § 2.4.2, Lavergne et al. (2010) define two types of features, unigram
and bigram; unigram features model the dependency between an observed word and a label,
while bigram features model the dependencies between successive labels as well.

7The training time is comparable only across the models that were trained using the
same number of threads. We ran the feature ablation experiments simultaneously using
different computational resources, and hence different number of threads.
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From Table 4.5, the model that uses all of the feature sets, ‘L+MS+M+O’,
and the ‘L+MS+M’ model perform best, but their accuracies comes at a price
of large memory requirement. Note that the Feature set size only reflects
the size of the feature vectors, the actual memory requirement to train the
‘L+MS+M+O’ model, for example, is almost 200 gigabytes.

The orthographic features seem to be most effective when combined with
lexical ones. This is evidenced by the accuracies of ‘L’ vs. ‘L+O’ and ‘MS’ vs.
‘MS+O’.

Memory-wise, the morphosyntactic (MS) model is the cheapest to train. It is
worth observing, however, that the morphosyntactic features are automatically
assigned, using the TnT tagger (Brants, 2000) which achieves an accuracy of
approximately 97% (on PTB WSJ sections 22 – 24). Thus, these features might
be inconsistent or noisy, hence impair the model (cf. § 4.3.2).

The lexical features are the most expensive to encode, due to the large
number (37,184) of word types in our train set. The lexical context is lim-
ited to four bidirectional window because the number of possible n-grams
increases with n, and their frequency decreases, which leads to higher memory
requirements.

Finally, we use the Wilcoxon signed-rank test (cf. § 2.5) to ascertain whether
or not the the results of the top three performing models are significantly
different. However, as we have only one accuracy observation for each model
(Table 4.5), we follow the approach of Spoustová et al. (2009) by dividing the
development set into smaller subsets to collect numerous accuracy observations.
We split our development set into 36 subsets (47 sentences each), then evalu-
ate the ‘L+MS+O’, ‘L+MS+M’ and ‘L+MS+M+O’ on these subsets. The
difference between ‘L+MS+O’ and ‘L+MS+M’ is statistically significant, but
not between ‘L+MS+M’ and ‘L+MS+M+O’ (at significance level p ≤ 0.05).
Although the difference between the ‘L+MS+M’ and ‘L+MS+M+O’ models is
not statistically significant, in the sequel, we deploy the ‘L+MS+M+O’ feature
set to train our lexical type model (as the difference in memory requirements
between the two models is relatively small).

Now that we know the best combination of features, in the following section,
we evaluate the ‘L+MS+M+O’ model on the test set, DeepBank section 21,
and investigate its classification errors.

4.3.2 Results and Error Analysis

Testing the ‘L+MS+M+O’ model (the lexical type model, henceforth) on
DeepBank section 21 gives an accuracy of 92.84%. This level of accuracy,
however, is possibly not reliable enough to serve as a front-end for the parser.
Therefore, we allow some lexical type ambiguity in order to attain higher
accuracies. Table 4.6 presents the results of n-best list decoding for the lexical
type model.
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Table 4.6: N-best list results for the lexical type model on DeepBank section 21

N Accuracy Tags per token
1 92.84% 1.00
2 94.21% 1.05
3 95.15% 1.10
4 95.64% 1.13
5 96.12% 1.17
10 97.06% 1.33
20 97.78% 1.58

The results in Table 4.6 suggest that a limited degree of ambiguity can,
in fact, improve the model’s accuracy. However, the decoding time does
increase with increasing n. Hence, in practice, we are exchanging ambiguity
and efficiency for a higher accuracy.

The error analysis reveals that 18.70% of the lexical type model’s errors
are unseen words. Additionally, we see two labels in the test set that never
occur in the training set, but these are only two instances.

To get a deeper insight into the errors produced by the lexical type model,
we manually assess the first one hundred (5%) errors of the model and recognize
three types of misclassification errors:

1. PTB PoS tag errors: As the PTB PoS tags are automatically assigned, we
see errors in assigning the lexical types due to mistakes in the PTB PoS
tags. 8% of the 100 errors are of this type.

2. Inconsistency errors: Errors where the PTB PoS is correct but still does
not correspond to the lexical type. 9% of the 100 errors assessed are of
this type.

3. Classification errors: The errors that the model could not learn or failed
to predict and do not fall under the aforementioned types.

In the rest of this section, we present examples of the three error types just
described.

Table 4.7 shows a case where mistakenly assigned PTB PoS tags confuse the
lexical type model. The token ‘a little’, for example, is incorrectly labeled
as ‘d_-_prt-sgm-nag_le’ (instead of ‘av_-_dg_le’) because it was, also
incorrectly, assigned the PoS tag ‘DT+JJ’. The gold PoS tag of ‘a little’ is
‘DT+RB’, where ‘RB’ stands for adverb, and the gold lexical type is an adverb
(‘av_-_dg_le’) as well.

From the training data we see a correlation between ‘a little’ as
a ‘DT+JJ’ and ‘d_-_prt-sgm-nag_le’ on the one hand, and between ‘a
little’ as a ‘DT+RB’ and ‘av_-_dg_le’ on the other hand. In the follow-
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Table 4.7: Example where incorrectly assigned PoS tags lead to incorrect
lexical types

Words PoS Gold Error
Consumers NNS n_pp_c-of_le
may MD v_vp_mdl-p_le
want VB v_vp_seq_le
to TO cm_vp_to_le
move VB v_np_noger_le
their PRP$ d_-_poss-their_le
telephones NNS n_-_c-ns_le
a little DT+JJ av_-_dg_le d_-_prt-sgm-nag_le
closer RBR aj_pp-pp_i-cmp_le
to TO p_np_i-nnm_le
the DT d_-_the_le
TV NN n_-_mc_le
set VBD n_-_c_le v_np*_le

ing sentence, for example, ‘a little’ is assigned ‘DT+JJ’ as a PoS tag and
‘d_-_prt-sgm-nag_le’ as a lexical type.

I sprinkle a little around . . .

These correlations explain why the model assigned ‘d_-_prt-sgm-nag_le’
instead of ‘av_-_dg_le’ to ‘a little’ in Table 4.7.

Another error in Table 4.7 is ‘set’ which is assigned the PoS tag ‘VBD’,
hence the model chooses the lexical type ‘v_np*_le’, whereas the gold PoS
tag is ‘NN’ which, if assigned, would help the model predict the correct lexical
type ‘n_-_c_le’.

In the second type of errors, what we call inconsistency errors, even though
a PTB PoS tag is correctly predicted8 it does not necessarily hint to the
DeepBank lexical type. The word ‘daytime’, in the following sentence, is an
adjective (‘JJ’) in the PTB gold-standard tags, but a noun in the DeepBank
(‘n_-_c_le’), however, the lexical type model follows the PTB PoS tag and
assigns ‘aj_-_i_le’ as a lexical type.

Two week ago, viewers of several NBC daytime consumer segments . . .

The third type of errors, classification errors, include the unseen words.
However, a few of the unseen words are in fact seen in the training data but in
different forms. The errors we see suggest that removing more punctuation
marks would increase the accuracy. The token ‘yes’, for instance, never occurs

8By correct we mean correct with respect to the PTB gold standard, because we see cases
where even the PTB gold standard does not seem plausible, such as the following sentence:
HePRP sitsVBZ downRP atIN theDT pianoNN andCC playsNNS. The word ‘plays’ is assigned NNS (noun,
plural) instead VBZ (verb, 3rd person singular present).
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as a quoted word in the training set, and hence when it appears quoted in the
test set it would be unseen to the model. However, one has to be very careful
in removing punctuation marks; the apostrophe, for example, can serve as an
individual token and is usually assigned the lexical type ‘n_-_cl-poss-pl_le’,
e.g. The boss’ book. Additionally, the apostrophe can be written as a closing
single quotation mark, therefore one cannot blindly remove single quotation
marks. Moreover, the ampersand (&) or the forward slash (/) can serve as
conjunctions, and it would be incorrect to ignore them.

A recurring error, among the classification errors, is confusing transi-
tive with ambitransitive verbs (optionally transitive verbs), ‘v_np*_le’ vs.
‘v_np_le’.

Other cases are just difficult for the classifier to learn; consider the following
sentences:

Contrasts predictably accumulate: First the music . . .
“The Fourth Knee Play” an interlude from “Einstein on the Beach” . . .

In the first sentence, the token ‘First’ is mistakenly assigned ‘n_-_pn_le’
instead of ‘av_-_i-vp_le’. In the second sentence, however, the gold-standard
lexical type of the token ‘Fourth’ is ‘n_-_pn_le’ (i.e. a proper noun), but the
classifier assigns the lexical type ‘aj_-_i-ord-one_le’.

For us humans, it is perhaps easy to see the difference between ‘First’ in
the first sentence and ‘Fourth’ in the second sentence, but not for a machine
learning model. This is a vexed question for the classifier because both tokens
are ordinal words and capitalized.

In the following sentence, all the words are proper nouns, ‘n_-_pn_le’:

“The Well-Tempered Clavier.”

The model successfully predicts the lexical types of ‘Well-’ and ‘Tempered’,
but incorrectly treats ‘The’ as a determiner (‘d_-_the_le’), which is the most
common lexical type of ‘The’. The model was, in a sense, resistant to the
capitalization of ‘The’, but not the other words in the sentence.

A couple of errors are artifacts of repeating the same PoS tag when an
initial token maps to more than one lexical token. For example, the DeepBank,
following the ERG tokenization conventions, splits the initial token ‘95–37’ to
three tokens ‘95’, ‘-’ and ‘37’, thus we use the PoS tag ‘CD’ for the three
lexical tokens. Assigning ‘CD’ to the n-dash ‘-’ confuses the lexical type
model, because ‘CD’ is a cardinal number.

The error analysis shows that some classification errors could be avoided
by improving the PTB PoS tagging. Other classification errors seem to be quite
difficult to learn. Hence, in the following sections, we assess whether using
bigram features and constrained decoding would help improve the accuracy of
the lexical type model.
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4.3.3 Training with Bigram Features

Towards the end of this project, the Abel high-performance computing (HPC)
cluster9 was made available to us for experimentation. We examined the
use of bigram features to improve the ERG lexical type assignment accuracy.
However, even with one terabyte of main memory we cannot experiment freely
with bigram features. The number of feature parameters grows quadratically
with the label set size and linearly with the number of values a feature can
take. Hence, a bigram feature like the word’s surface form (Wi) requires 203
gigabytes of memory, because in the DeepBank train set there are 37,184 word
forms and 857 labels, which leads to 37, 184 × 857 × 857 = 27, 309, 751, 616
features each represented as a double floating point value (8 bytes). Moreover,
to train the model with only this one bigram feature (using 12 threads), the
Wapiti toolkit requires 450 gigabytes of memory.10

Since the cardinality of the morphosyntactic features (PoS tags) is relatively
small we experiment with converting Ti, in Table 4.4, to bigram feature while
keeping the rest as unigram features. The accuracy of the lexical type model
increases to 93.06% (compared to 92.84% with unigram features only). This
result improves a bit over the original lexical type model, but with a cost of 81
hours of training and hundreds of gigabytes of main memory.

Due to time constraints, we could not carry out more experiment on using
bigram features to judge whether or not additional bigram features would
boost the accuracy. Nonetheless, we believe that the computational resource
requirements to train CRFs with bigram features are not easily affordable, hence
we rather focus on possible division of labor methods to reduce the memory
requirement and possibly improve the overall accuracy (§ 4.5).

4.3.4 Simulation of Constrained Decoding

In some classification tasks, we might have access to information that would
help constrain the choices of the classifier. In concrete terms, one can extract
the possible PoS tags of a given word from some dictionary and, accordingly,
constrain the PoS tagger in its training and prediction phases.

Previous studies have shown that CRFs can be constrained on two levels, the
training level (parameter estimation) and decoding level (inference) (Waszczuk,
2012; Skjærholt, 2011).

Skjærholt (2011) constrained CRFs on the inference level (constrained decod-
ing), while Waszczuk (2012) defined an extension of CRFs named Constrained
Conditional Random Fields (CCRFs) which imposes constraints on the training
and inference of CRFs.

9http://www.uio.no/english/services/it/research/hpc/abel/
10As mentioned in § 2.4.2, we are using the L-BFGS algorithm for CRF parameter estimation.

In Wapiti this algorithm requires 8 × F × (5 +M × 2) bytes, where F is the number of
features and M is the size of the L-BFGS history, which is 5 by default in Wapiti.
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Table 4.8: Constrained decoding for CRF, evaluated on DeepBank section 21

Model Per token accuracy
Unconstrained 92.89%
Constrained 92.99%

The ERG lexicon provides us with valuable information that could restrict
the CRF model. In this section, we simulate constrained decoding for CRFs as
a post-processing step. For each lexicon entry, we extract a complete set of
candidate lexical types, and for unknown words the set of constraints would
be empty. Then, we walk the n-best lists of lexical types in decreasing order of
probability, and eliminate the lists that violate the set of constraints extracted
from the ERG lexicon, until we find a list that conforms to these constraints.

Table 4.8 shows the results of evaluating the constrained lexical type model
on DeepBank section 21.11

We do not see much of an improvement in the accuracy of the constrained
model. The reason, although speculative, may be that the unconstrained model
already assigns very small probabilities to ineligible lexical types of a given
word. Thus, constrained decoding did not gain the constrained model much
in terms of accuracy. However, we believe that actual constraining of the CRF
training and decoding would speed up training and inference, as suggested by
the recent study of Waszczuk (2012).

4.3.5 Comparison with C&C

Our results are not directly comparable to those of Dridan (2009) and Ytrestøl
(2012) because they used different versions of the ERG, different data sets, and
different machine learning models. However, both Dridan (2009) and Ytrestøl
(2012) used the Clark and Curran supertagger (C&C; Clark & Curran, 2007).
Therefore, in part to relate our study to theirs and also to compare CRFs to
MaxEnt models, we train and test the C&C supertagger on our data set, the
DeepBank.12 Furthermore, in order to make a fair and reliable comparison, we
use the C&C feature template, provided in Clark and Curran (2010), to train
a CRF-mimicry of C&C. The feature set is presented in Table 4.9 following the
same notation we used in our feature ablation study Table 4.4.

We train the CRFmodel and the C&C supertagger on DeepBank sections 0 – 19
and test them on section 21.

As shown in Table 4.10, our CRF model with a replication of the features in
the C&C supertagger outperforms the MaxEnt-based C&C supertagger. However,

11Due to technical reasons related to ERG parsing, we couldn’t extract the lexical types for
the words of four sentences (in DeepBank section 21). Hence, we removed them and evaluated
the unconstrained lexical type model on DeepBank section 21 without these four sentences.

12More accurately, we are comparing implementations of the CRFs and MaxEnt models,
Wapiti and C&C.
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Table 4.9: The C&C supertagger features
Word templates PoS tag templates
Wi Ti
Wi−1 Ti−1
Wi−2 Ti−2
Wi+1 Ti+1
Wi+2 Ti+2

Ti & Ti−1
Ti−1 & Ti−2
Ti−1 & Ti+1
Ti & Ti+1
Ti+1 & Ti+2

Table 4.10: The accuracy of C&C and CRF on DeepBank section 21

Model Per token accuracy
C&C 90.29%
CRF 91.84%

the training time of the CRF model is remarkably longer than that of the C&C
tagger. Training the CRF model takes approximately 50 hours, while the C&C
can be trained in 2.5 hours. Therefore, it is possible that with massive amounts
of training data the C&C model could outperform the CRF model. Ytrestøl
(2012) reports that the learning curve of the C&C supertagger steadily increases
with more training data, and our lexical type CRF model (§ 4.3.2) shows the
same behavior in Figure 4.3. However, training a CRF model, with 857 labels,
on millions of sentences, as Ytrestøl (2012) did for C&C, might be practically
infeasible (in fact, as we shall see in § 4.5.2, training a CRF model on large
amounts of data is doable only with a relatively small number of labels).

Finally, we train the C&C supertagger with gold-standard major syntactic
categories as the PoS tag features (T in Table 4.9) instead of PTB PoS tags.
The motivation behind this change is to gauge the potential of an approach
similar to ensemble learning in which a CRF model would assign major syntactic
categories, then these would be used as features for the C&C supertagger. With
gold-standard major syntactic categories, the accuracy of C&C increased to
91.19% on DeepBank section 20, compared to 91.06% with PTB PoS tags.13 If
the accuracy were higher, it would have been interesting to use a CRF model to
assign major syntactic categories (cf. § 4.4), then employ its output as features
for the C&C supertagger which, in turn, assigns lexical types.

13Note that the numbers reported in Table 4.10 are on DeepBank section 21.
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Figure 4.3: The learning curve of the lexical type model (tested on DeepBank
section 20). Note that zero on the ‘Section(s)’ axis refers to DeepBank section
number 0.

4.4 Major Syntactic Category Experiments
To gauge the accuracy vs. granularity balance, in this section we seek to trade
some linguistic granularity for higher accuracy by choosing the major syntactic
categories (MSC) as our lexical categories (tagset).

Again, we need to specify the data, label and feature sets in order to train
our MSC CRF model. We deploy the same data split as in the lexical type
experiments, DeepBank sections 0 – 19, section 20 and section 21 for training,
development and testing, respectively.

The label set consists of the eleven broad syntactic categories defined by the
ERG, namely: verb (v), noun (n), adjective (aj), adverb (av), preposition (p),
prepositional phrase (pp), determiner (d), conjunction (c), complementizer
(cm), punctuation (pt) and miscellaneous (x).

For the feature set, we start from the features in Table 4.4, but in this
experiment it is possible to use bigram features given the small number of labels.
After several rounds of feature engineering experiments on the development set,
we arrive at the best-performing model trained on the feature set presented
in Table 4.11, where ‘Punc’ indicates whether or not a token ends with a
punctuation mark,14 ‘Len’ is the length of the token and the rest follow the

14Punctuation marks are identified based on the standard implementation of the function
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Table 4.11: The set of features used for the major syntactic categories labeler
— † Bigram feature
Lexical Morphosyntactic Morphological Orthographic
Wi Ti 5-prefixi Capi & Wi
Wi−1 Wi & Ti† 5-suffixi Capi & Cap i−1
Wi+1 Wi+1 & Ti+1 4-prefixi Hyphi
Wi−2 Wi−1 & Ti−1 4-suffixi Wi & Leni
Wi & Wi−1 & Wi−2 Ti & Ti+1† 3-prefixi
Wi & Wi+1 & Wi+2 Ti & Ti−1† 3-suffixi

Ti & Ti+2† 2-prefixi
Ti & Ti−2† 2-suffixi
Ti & Ti+1 & Ti−1 1-prefixi

1-suffixi

notation used in Table 4.4.

4.4.1 Results and Error Analysis

The MSC model achieves a per token accuracy of 98.01% on the test set,
DeepBank section 21.

In the error analysis, we observe that 13.62% of the errors are unseen lexical
tokens. We manually check the first one hundred (18%) of the MSC model’s
errors observing the same types of errors seen in the output of the lexical type
model (§ 4.3.2). We find that 19% of the errors can be blamed on incorrect
PTB PoS tags (errors of the first type). 25% of the errors are due to correctly
assigned yet misleading PTB PoS tags (errors of the second type).

What is more, in some cases we see that giving up linguistic precision
impairs the model; consider the following sentence:

. . . sponsor and a topic: On Mondays . . .

The MSC model incorrectly assigns the category ‘p’ to the colon instead
of ‘pp’, whereas the lexical type model correctly predicts the lexical type
of the colon (hence it assigns the correct major syntactic category as well).
The lexical type model assigns the lexical type ‘n_pp_c-of_le’ to the word
‘topic’ which selects for a ‘pp’, hence when the model assigns a label to the
colon, it favors the label ‘pp’ over ‘p’. This example directly corresponds to
the observation of Brants (1997): “In some cases, finer grained categories of
the words in the context deliver the information needed for disambiguation”.

Inspired by the case just discussed, we evaluate the accuracy of the lexical
type model based only on the correctness of the major syntactic category field
of the lexical types it assigns. The lexical type model performs as accurate as
the MSC model in assigning major syntactic categories, delivering an accuracy

ispunct in C.

61



4. Lexical Categorization

Table 4.12: N-best list results for MSC tagging on DeepBank section 21

N Accuracy Tags per token
1 98.01% 1.00
2 98.97% 1.05
3 99.36% 1.10
4 99.46% 1.14
5 99.57% 1.18
10 99.74% 1.37
20 99.89% 1.71

of 98.03%. Furthermore, we observe that 66% of the errors made by the
lexical type model, on the major syntactic category level, are also made by the
MSC model, which suggests that finer grained categories might be helpful for
at most one third of the errors.

Aiming for a near perfect MSC labeling, we allow limited degrees of
ambiguity in assigning MSCs. The results in Table 4.12 show that rather small
amounts of ambiguity lead to remarkable accuracy gains: with 5-best decoding
the model attains an accuracy of 99.57%.

4.4.2 Derivational Morphology: Category-Changing Rules

As described in § 4.1, a lexical item in the ERG consists of a lexical entry and
lexical rules. Among the lexical rules, there is a set of so-called category-
changing derivational rules which change the major syntactic category of a
word. Consider the following sentence:

Majoraj Europeanaj auctionn housesn arev turningv increasinglyav top
specializedv salesn.

The word ‘specialized’, in the sentence above, functions as an attributive
adjective but in the gold-standard ERG analysis it is assigned the major syntactic
category ‘v’. However, by looking at the lexical item of ‘specialized’, we see
that it includes the derivational rule ‘v_j-nb-pas-tr_dlr’ which indicates
that ‘specialized’ is an adjective derived from a transitive passive verb.
Hence, the major syntactic category of ‘specialized’ is converted to ‘aj’ in
the lexical parsing stage (cf. § 2.3).

In consultation with the ERG developers, we compiled a list of the category-
changing lexical rules, and accordingly changed the major syntactic categories
in the DeepBank in order to judge whether or not the category-changing
derivational rules affect the accuracy of the MSC model.

We carry out two experiments, ‘MSC-changed’ and ‘MSC-augmented’. First,
in ‘MSC-changed’, we use the basic inventory of major syntactic categories, but
with looking at the lexical item (lexical entry plus applications of lexical rules)
and adjusting the category when one of the derivational rules on our compiled
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Table 4.13: Category changing rules with MSC tagging results (DeepBank
section 20)

Model Accuracy # labels
MSC 98.29% 11
MSC-changed 98.12% 11
MSC-augmented 98.09% 16

list has applied. When we see multiple applications of category-changing rules,
e.g. noun to verb to adjective, we rely on the topmost rule application to
determine the category of the lexical item as a whole.

Second, ‘MSC-augmented’, we add five derived categories to the label set
of major syntactic categories, e.g. ‘v-n’ verb changed to noun, to see whether
such extra granularity helps or hurts in tagging accuracy.

Table 4.13 shows the results of the two experiments. The three models
deliver almost the same level of accuracy, when evaluated on DeepBank section
20, but still the results in Table 4.13 are not easily comparable, as the labels
are not exactly the same in these models. We observe, however, that 80% of
the MSC model errors are shared with the MSC-changed model and 87% of the
errors made by the MSC model are also made by the MSC-augmented model.
Therefore, we speculate that the errors made by these models are independent
of the derivational morphological information we exploited. Therefore, we
speculate that majority of the errors in assigning major syntactic categories
are independent of the derivational morphological information we exploited.

4.5 Specified Lexical Type Experiments

CRFs are problematically expensive to train and decode with large label sets,
such as the ERG lexical types. Thus, in this section, we propose a divide-and-
conquer strategy to overcome this problem.

Given the pattern of the ERG lexical types, we recognize eleven subsets of
lexical types depending on the value of their major syntactic category fields. We
subdivide the lexical types into eleven mutually exclusive sets each consisting
of lexical types that share the same major syntactic category. We call these
sets the ‘specified lexical type’ sets, Table 4.14 presents these sets and the
number of lexical types within each, where ‘v-letype’, for example, denotes the
set of lexical types that have a verb as major syntactic category.

For each specified lexical type set, we train a CRF model; which means
we need to define the data and feature sets of these models. We reuse the
feature templates presented in § 4.3 and § 4.4 to train the specified models;
more specifically, we use the feature set in Table 4.4 to train the n-letype and
v-letype models, and the features in Table 4.11 to train the rest of the specified
models.
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Table 4.14: The specified lexical type sets

Specified letype # lexical types
x-letype 10
cm-letype 12
d-letype 40
c-letype 57
pt-letype 2
pp-letype 16
av-letype 77
aj-letype 84
p-letype 62
n-letype 231
v-letype 266

Table 4.15: Data representation in the specified lexical type models
Word letype n-letype v-letype
The d_-_the_le d d
top aj_-_i-att_le aj aj
money n_-_mc_le n_-_mc_le n
funds n_-_c_le n_-_c_le n
are v_prd_are_le v v_prd_are_le
currently av_-_i-vp-x_le av av
yielding v_np*_le v v_np*_le
well av_-_dg-v_le av av
over av_-_dg-jo-num_le av av
9 aj_-_i-crd-gen_le aj aj
% n_-_c-meas-spr_le n_-_c-meas-spr_le n

The data sets, however, need to be reproduced for each specified lexical
type model. For a given specified model, the training data consist of two types
of training instances; (a) tokens with lexical types that have the same major
syntactic category of the model, and (b) tokens with lexical types that have
different major syntactic categories from that of the model. We generalize all
the lexical types of the instances in (b) by using only their major syntactic
categories. Hence, we add 10 labels to each specified lexical type set.

To better understand the data and label sets, Table 4.15 shows the labels
of an example sentence in the data sets of the original lexical type model
(letype), the noun lexical type model (n-letype) and the verb lexical type
model (v-letype).

Observe that only lexical types with an ‘n’ major syntactic category are
used in the n-letype labels, the rest are major syntactic categories. Similarly, in
the v-letype set, we see only lexical types with a ‘v’ major syntactic category.

Now that we have the data, label and feature sets, we train the models
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Table 4.16: Accuracy of the specified letype models on DeepBank section 20

Specified letype Per token accuracy Training time
x-letype 98.34% 9 mins
cm-letype 98.32% 13 mins
d-letype 98.33% 48 mins
c-letype 98.27% 1.75 hours
pt-letype 98.26% 6 mins
pp-letype 98.27% 17 mins
av-letype 98.15% 2.58 hours
aj-letype 98.21% 2.71 hours
p-letype 97.06% 1.60 hours
n-letype 96.87% 1.88 hours
v-letype 96.58% 2.20 hours

on DeepBank sections 0 – 19, and use sections 20 and 21 for development and
testing, respectively. Table 4.16 shows the result of the individual models each
evaluated on ‘its’ development set.

The training times of all the models are substantially shorter than that of
the lexical type model (which takes almost 20 hours); this is a distinct advantage
of the specified models of which we will make use in § 4.5.2. Although the
accuracies in Table 4.16 look relatively good, the the overall accuracy may
not be as good, when the errors of the eleven models are combined. In other
words, we cannot quantify the gain in accuracy until we combine the outputs
of all the models.

When combining the outputs of the eleven specified models, two options
arise. First, run all the models in parallel, then merge their outputs, which we
will refer to as the ‘parallel method’. Second, label the data using the MSC
model (§ 4.4), then use the output of the MSC model as partially labelled
inputs to the specified lexical type models, we will refer to this setup as the
‘MSC-based method’.15 Table 4.17 shows an example of how the input data
would look like in the MSC-based setup.

We experiment with both methods, however, we first need to consider two
side effects of such methodologies, as follows:

1. A lexical token might be assigned more than one lexical types. In this
case we choose the label of the more accurate model, in the order of
Table 4.16. A better policy is, of course, to consider the probabilities of
the labels, but since this phenomenon was infrequent we opted for the
convenient method. This case only happens in the ‘parallel’ setup.

15Achieving the MSC-based method was relatively easy, thanks to the implementation of
‘forced’ decoding in Wapiti.

65



4. Lexical Categorization

Table 4.17: Example of inputs to the specified lexical type models in the
MSC-based setup.

It adds something to the market.
MSC output n v n p d n
n-letype – v – p d –
v-letype n – n p d n
p-letype n v n – d n
d-letype n v n p – n

Table 4.18: The accuracy of combining the specified lexical type models outputs
on DeepBank section 21

Experiment Per token accuracy
Lexical type 92.84%
Parallel 92.29%
MSC-based 92.20%

2. A lexical token might not get any lexical type, only a major syntactic
category. Handling such cases depends on what we take to be our set
of lexical categories. If we want pure lexical types, then we count it as
an error, even if the major syntactic category is correct. However, if
mixed lexical categories are allowed (lexical types and major syntactic
categories), we can include the count of correctly assigned MSCs in the
total accuracy.

4.5.1 Results and Discussion

Table 4.18 shows the results of the ‘MSC-based’ and ‘parallel’ experiments on
DeepBank section 21.

The results reported do not improve over the original lexical type accuracy,
however, the efficiency (memory and run time) of the specified lexical type
models is substantially better than that of the lexical type model.

The lexical type model takes 4 minutes to decode DeepBank section 21,
while the specified lexical type models need 69 seconds when ran sequentially.
Even though the training time might not be as critical as the decoding time,
in the lexical type mode, the training time is very expensive to the extent
that adding more training data becomes practically unfeasible. However, the
training time of all the specified lexical type models allows increasing the size
of the training set, hence, potentially improve the accuracy (cf. § 4.5.2).

By investigating the outputs of the two experiments, we see that almost
15% of the ‘MSC-based’ errors are made by the MSC model. We also notice
that 12% of the errors, in the parallel experiment, are tokens that did not get
any lexical type, and only 0.3% of all tokens received more than one lexical
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type. Moreover, 16% of the errors in the MSC-based output get only MSC.
Hence, if we consider our lexical category set to contain lexical types and major
syntactic categories, the accuracies of the parallel and MSC-based methods
would increase to 92.84% and 92.86%, respectively.

As the differences between the results are very small, we test for statistical
significance between the lexical type model on the one hand, and the parallel
and MSC-based methods on the other hand. We also test for statistical
significance between the results of the two methods of combining the specified
lexical type models outputs, the parallel and MSC-based methods.

We carry out three rounds of statistical significance testing (using the
Wilcoxon signed-rank test, cf. § 2.5), following the approach of Spoustová et
al. (2009) by dividing the test set (DeepBank section 21) into subsets and
evaluating the models on these subsets to get numerous accuray samples. First,
we split the test set into 30 subsets (47 sentences each), second, 100 subsets
(14 sentences each) and third, 14 subsets (100 sentences each). In all rounds
and for all the results, the p-values are smaller than 0.05, hence we could reject
the null hypothesis that there is no statistically significant difference between
the results of the models evaluated.

In the following section, we look into training the specified lexical type
models on considerably larger amounts of training data.

4.5.2 Indirect Self-Training

Self-training is a semi-supervised machine learning method; one can ‘self-train’
a supervised classification model (like our lexical categorization models) on
training data produced by another supervised model. In this section, we train
the specified lexical type models on data generated by a syntactic parser.
We refer to this setup as ‘indirect self-training’ just to distinguish it from
self-training as defined in McClosky et al. (2006a).

Many studies investigated (indirect) self-training as a means to boost in-
domain and out-of-domain lexical categorization (supertagging) and syntactic
parsing (McClosky et al., 2006b; Kummerfeld et al., 2010; Ytrestøl, 2012).

Ytrestøl (2012) trained the C&C supertagger on 10 million automatically
annotated sentences from the WikiWoods Treecache (Flickinger et al., 2010)
observing a steady increase in supertagging accuracy. Kummerfeld et al. (2010)
used self-training to speed up their parser while maintaining its accuracy. They
trained a supertagger on the parser’s output in order to make its decisions
better suit the parser. Kummerfeld et al. (2010) report 50% increase in
in-domain parsing speed and 45% in out-of-domain parsing speed.

Motivated by the relatively cheap computational cost of training the speci-
fied lexical type models, we train some of these models on 1.14 million auto-
matically annotated sentences (22.5 million words) from the North American
News Text Corpus (NANC; cf. § 2.6). We produce the training data by parsing
the NANC text using the HPSG PET parser (Callmeier, 2000).
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Table 4.19: Self-training accuracy of the specified lexical type models on
DeepBank section 20

p-letype n-letype
DeepBank 97.06% 96.87%
NANC 96.65% 95.28%

Table 4.20: Self-training accuracy of the specified lexical type models on cb

p-letype n-letype
DeepBank 93.32% 91.73%
NANC 96.02% 95.26%

The feature sets remain as previously defined for all the specified lexical
type models. It is worth observing, however, that the number of labels (lexical
types) seen in the NANC training data grows to 1,000, an increase of 15% over
the number of lexical types seen in DeepBank, which makes the classification
problem more difficult.

Due to time constraints (cf. below), we trained only two specified lexical
type models, n-letype and p-letype. To Train both models on 22.5 million
words using 10 threads, the p-letype model takes 64 hours, while the n-letype
model takes 88 hours.

Table 4.19 presents the results of evaluating the NANC p-letype and n-letype
models on DeepBank section 20, together with the results of DeepBank models
from § 4.3.

The models trained only on NANC data achieve lower accuracies than the
ones trained only on DeepBank, however still not significantly lower given the
fact that NANC data is automatically annotated. This little drop in the accuracy
likely is due to the higher number of labels in the NANC model. Looking at the
errors of the NANC n-letype model and the DeepBank n-letype model, we see
that they share only 40% of the errors.

At this point, we cannot predict the overall accuracy of the eleven NANC
specified models from the n-letype and p-letype models, especially as we see
different types of errors from the ones we see in the DeepBank-only models (as
just mentioned). In other words, it might be the case that the eleven NANC
models have a lot of errors in common, hence the overall accuracy might be
better than that of the DeepBank models.

We evaluate the models on out-of-domain data using a technical essay on
software engineering methods, The Cathedral and the Bazaar (cb)16, which is
part of the Redwoods test set (cf. § 2.6). Table 4.20 presents the accuracies of
the DeepBank n-letype and p-letype models and NANC n-letype and p-letype
models on cb.

16http://catb.org/esr/writings/cathedral-bazaar/
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Table 4.20 reflects an evident advantage of using large amounts of training
data, even though automatically annotated. We see a sharp increase in the
accuracies of both models when trained on NANC data. One explanation for
these differences in the accuracy is that about 30% of the words in cb are
unseen to the DeepBank models. Hence, it is plausible that with much more
training data we could fill some of this lexical gap.

Our results confirm the findings of Ytrestøl (2012). Training on very
large amounts of automatically annotated data can achieve competitive results
in comparison to training on gold-standard data; in fact, we attained more
accurate results on out-of-domain data using automatically annotated data.
Moreover, our comparison was a little unfair (to the NANC models) because the
number of labels in the NANC models is 1,000 whereas in the DeepBank models
it is 857. One immediate suggestion would be to try constrained decoding on
the NANC models, but this remains for future work.

4.5.3 Tiered CRFs

Towards the very end of this project, we came across a contemporaneous
study by Radziszewski (2013) which presents an approach to morphosyntactic
tagging for Polish that bears a lot of similarities to our specified lexical types.
Radziszewski (2013) argues that performing morphosyntactic analysis for
Polish, whose tagset contains over 1000 different tags (Przepiórkowski, 2005),
is rather difficult with a single CRF model. Hence, he proposes using tiered
CRFs, which to a large degree resembles our specified lexical type approach.

Radziszewski (2013) carried out his experiments using the National Corpus
of Polish (Przepiórkowski et al., 2010), where the tags adhere to a specific
pattern. Each tag consists of: (a) grammatical class (a generalization of
the PoS notion) which corresponds to the major syntactic category in ERG,
and (b) set of attributes depending on the value of the grammatical class.
For example, the grammatical class noun is specified with attributes such as
number, gender, and case. A concrete example is subst:sg:nom:m2 which
denotes an animate masculine (m2), singular (sg) noun (subst) in a nominative
form (nom) (Radziszewski, 2013). The first tier of CRFs selects the grammatical
class. Accordingly, the subsequent models assign attributes to the grammatical
class selected by the first CRF model.

As such, the tags and the strategy look very similar to the ERG lexical
types and our specified lexical type approach. However, there are two major
differences. First, the ERG lexical types encode syntactic information, rather
than localized morphosyntactic and morphological information, making the
task of predicting ERG lexical types more complex and challenging. Second,
the morphosyntactic analyis in Radziszewski (2013) relies on a morphological
analyzer, hence it assumes the input as a list of tokens each assigned a
set of possible morphosyntactic interpretations, which is, more or less, like
constraining the CRF models.
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4.6 Summary
This chapter presented rather numerous lexical categorization experiments
with different setups. Therefore, it is worthwhile summing up the numbers
and tables we have shown.

We started the chapter by a theoretical introduction of lexical categories
and categorization in the ERG realm. Following that, we situated our work
with respect to Dridan (2009) and Ytrestøl (2012), showing novelty in our: (a)
use of CRFs as a sequence labeler, (b) feature ablation studies and (c) specified
lexical type approach.

Then we explored the ERG lexical categorization through three ‘tracks’
of experimentation based on the granularity of the lexical categories. In
the lexical type experiments, we showed that using lexical, morphosyntactic,
morphological and orthographic features delivers the best accuracy of assigning
ERG lexical types (92.84% on DeepBank section 21). Most notably, the manual
error analysis of 5% of the classification errors shows that 8% of the errors
can be blamed on the automatic assignment of PTB PoS tags and 18% are
unknown words. We also investigated the use of CRF bigram features in training
our lexical type model, but it turned out not to be cost-effective. Then, we
simulated constrained decoding for our CRF lexical type model, even though
the accuracy didn’t noticeably improve, we still believe that there is a potential
for improvement if constrained CRFs, as presented in Waszczuk (2012), were
implemented. The CRF-mimicry of the C&C supertagger proved to be more
accurate than C&C, however with the cost of longer training times.

In the major syntactic category experiments, our model landed an accuracy
of 98.01%; with 5-best lists decoding we attain 99.57%. We demonstrated
that changing the MSCs according to the category-changing derivational rules
doesn’t affect the accuracy.

We presented specified lexical types to speed up the training process of
our CRF models. In this approach, we greatly reduced the training time and
memory requirements to the extent that training on 22.5 million words became
feasible. We showed that training some of our specified lexical type models on
automatically annotated data might improve in-domain accuracy and certainly
improves out-of-domain accuracy.

All in all, when the size of the training data is relatively limited, our CRF
model outperforms the MaxEnt-based C&C. By relatively limited amount of
training data we mean in comparison to the massive amounts of automatically
annotated training data Ytrestøl (2012) used in training C&C achieving an
accuracy of about 95%. However, Ytrestøl (2012) trained the C&C supertagger
for one month, hence we also have to train CRFs for one month to allow a fair
comparison.
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Chapter 5

Integration

This thesis approaches tokenization and lexical categorization as stand-alone
problems. Its ultimate goal, however, is to improve subsequent NLP applica-
tions through improving tokenization and lexical categorization. In this chapter,
we discuss integrating the models developed in Chapter 3 and Chapter 4 within
the syntactic parsing task (parser integration).

In § 5.1 we introduce candidate approaches for parser integration. In § 5.2
we explain our experimental setup. In § 5.3 and § 5.4 we introduce the results of
using our tokenization and lexical categorization models to restrict the parser
search space.

5.1 Introduction and Related Work

In Chapter 2, we mentioned two main approaches to integrate lexical categories
with parsers, hard constraints and soft constraints.

In the discipline of operations research, a hard constraint is a constraint
that any solution must satisfy, whereas a soft constraint is a cost function that
the solution seeks to maximize or minimize. In a similar spirit, we can define
hard and soft constraints on syntactic parsing: the parser must choose syntactic
analyses that satisfy the hard constraints and it should prefer analyses that
maximize (or minimize) the probability of the soft constraints.

Previous studies have investigated using lexical categories as both hard
and soft constraints on the syntactic parsing task. In the following, we review
some of these studies as candidate methods to integrate information from our
tokenization and lexical categorization models.

Ninomiya et al. (2006) used lexical categories (supertags) as soft constraints
on parse ranking; they ranked the parse trees only in terms of supertagging
probabilities. Lexical categories can also be incorporated into parse ranking
and disambiguation models as auxiliary distribution features. van Noord (2007)
shows that using auxiliary distribution features in a parse selection model
improves parsing accuracy.
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Sarkar (2007) used LTAG supertags as hard constraints to reduce syntactic
lexical ambiguity, hence improve parsing efficiency. Similarly, Dridan (2009)
restricted the parser search space by using supertags to decide what lexical
entries can be added to the parsing chart. In both studies, parsing efficiency
increases but at the cost of decreased coverage, even with n-best lexical
categories. However, both studies suggested ways to regain the lost coverage.
We return to the findings of Dridan (2009) later as they are most relevant to
our work.

Clark and Curran (2004) introduced an adaptive supertagging approach for
CCG parsing. The supertagger provides the parser with lexical categories based
on their probabilities (within a specific threshold β). When the parser fails to
find an analysis, the threshold (β) is relaxed. This approach prefers efficiency
to accuracy or coverage, because the supertagger is very restrictive unless the
parser fails to find an analysis. If accuracy or coverage is preferred to speed,
then one would consider the approach of Auli and Lopez (2011), where they
suggest reversing the adaptive supertagging approach of Clark and Curran
(2004) by pruning the parse search space only when it becomes impractically
large, i.e. when the size of the parse chart exceeds some predefined limit.

Dridan (2009), inter alios, presents a view on using lexical categories for
handling unknown words to the parser. One downside of lexicalized parsers
is the data sparsity problem; the ERG lexicon, for example, includes a finite
number of lexical entries, hence there will always be unseen words. Hence,
lexical categories can be exploited to leverage the lexical resources of the parser,
by using them to annotate the input of the parser.

All of the reviewed approaches are applicable to the ERG parsing pipeline.
In the following section, we introduce our integration strategy for lexical
categories and we also gauge the benefits of using ERG token boundaries as
hard constraints on the parser.

5.2 Experimental Setup

The previous section presented several approaches to integrate lexical infor-
mation into parsing systems. In this thesis, we use the outputs from our
tokenization and lexical categorization models to impose hard constraints on
the ERG parsing pipeline, i.e. restricting which lexical items are added to the
parsing chart. The on-going developments of the emerging version of ERG
allowed integrating the output of our lexical categorization models as lexical
filtering rules (cf. § 2.3) without any code changes. These developments in ERG
allow using so-called micro-tokens (modified initial tokens, cf. § 3.4) as input to
the parser, whereas the standard parsing setup in ERG1212 assumes an input
of initial tokens.

We use the Grammar Markup Language (GML; Read et al., 2013) to
annotate the input to the parser, as illustrated in Table 5.1. Then we format
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Table 5.1: Data annotation with GML — (1) raw text, (2) token boundaries,
(3) token boundaries and MSCs and (4) ambiguous MSCs

(1) Ms. McCraw says the magazine is fighting back.
(2) b cMs.b cMcCrawb csaysb ctheb cmagazineb cisb cfightingb cback.b c
(3) b cMs.b |ncMcCrawb |ncsaysb |vctheb |dcmagazineb |ncisb |vcfightingb |vcback.b |ppc
(4) b cMs.b |ncMcCrawb |ncsaysb |vctheb |dcmagazineb |ncisb |vcfightingb |vcback.b |pp|nc

our data files in compliance with the so-called YY input format of the PET
parser.1

The filtering of token boundaries is somewhat ‘conservative’, meaning that
we should provide the left and right boundaries of any token retained for
parsing, but extra token boundaries are also allowed, e.g. adding a token
boundary inside a multi-word lexical entry (b cMountainb cViewb c) would
still allow the multi-word expression to be recognized as a single token. This
conservative filtering enables n-best ambiguous token boundaries, hence help
reduce loss in coverage.

In lexical category filtering, for each token, if its right token boundary carries
major syntactic category or lexical type annotation, then the corresponding
lexical items can only be added to the parsing chart if their category is
compatible with the annotation. In concrete terms, in line (2) Table 5.1,
none of the token boundaries carries lexical category annotation, hence all
corresponding lexical items would be considered in parsing. However, in line
(3) Table 5.1, each right token boundary contains an MSC annotation which is
used in lexical pruning, e.g. the token ‘back’ is annotated with a ‘pp’ major
syntactic category, hence only lexical items with ‘pp’ would be added to the
parsing chart.

Our integration choice is primarily motivated by the fact that more efficient
ERG parsing is needed. Today, the ERG parser (PET) uses 20 seconds, on
average, to analyze a sentence (cf. following sections); ERG is continuously
enriched to achieve higher accuracy and coverage scores, making the parsing
task more computationally expensive.

In the following experiments, we try to quantify the benefits of using
lexical categories and token boundaries to the ERG parser in terms of coverage,
efficiency and accuracy. Coverage is the proportion of sentences which receive
at least one syntactic analysis. Efficiency is the average parsing time per
sentence. Accuracy is evaluated in two ways: (a) exact matches, the number of
parse analyses that exactly match the gold-standard ones, and (b) PARSEVAL
metric (Black et al., 1991) which, in simple terms, splits the output and gold
parse trees into two sets of constituents (labeled brackets) and computes the
overlap between these sets.

The coverage, efficiency and accuracy results reported in this chapter
were measured using the [incr tsdb()] performance profiling tool (Oepen &

1http://moin.delph-in.net/PetInput
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Table 5.2: Parsing efficiency, coverage and accuracy using ambiguous token
boundaries, gold-standard token boundaries and automatically assigned token
boundaries.

Efficiency Coverage Accuracy
Seconds % Exact matches PARSEVAL

All 20.61 97.3 339 87.2
Gold TB 19.00 97.6 345 87.8
TB 18.81 97.3 339 87.5

Flickinger, 1998; Oepen & Callmeier, 2000).2
Finally, all of the experiments in the following sections are evaluated on

DeepBank section 21, totalling 1,389 sentences.3 In addition, we run the parser
in the treebank development mode, meaning that the parser would time-out
after four minutes if it failed to find an analysis.

5.3 Token Boundaries Integration
As we explained in Chapter 3, all of the recent studies on ERG lexical cate-
gorization and parsing either assume gold-standard ERG token boundaries or
operate off an ambiguous lattice of token boundaries. The main goal of our
ERG tokenization model (§ 3.4) is to enable ERG lexical categorization. However,
in this section we investigate whether or not the ERG tokenization model would
also help improve parsing.

We compare the accuracy, efficiency and coverage of the parser in two con-
figurations. First, unrestricted parsing with fully ambiguous token boundaries
(i.e. with all possible token boundaries), and second, restricted parsing with
token boundaries provided by our ERG tokenization model. The upper bound
for this experiment is parsing with gold-standard token boundaries. Note that
this upper bound is only for coverage and accuracy, not efficiency, because the
automatically assigned token boundaries might be more restrictive than the
gold-standard ones, hence they can achieve higher efficiency than gold-standard
token boundaries.

Table 5.2 shows the efficiency, coverage and accuracy of the ERG parser
using ambiguous token boundaries (All), gold-standard token boundaries (Gold
TB) and automatically assigned token boundaries (TB).

With ambiguous token boundaries, the parser takes 20.68 seconds, on
average, to analyze a sentence. Hence, the efficiency numbers in Table 5.2 can
be translated as reductions of parsing time by: 7.8% with gold-standard token

2http://www.delph-in.net/itsdb/
3Note that DeepBank section 21 contains 1,414 sentences of which we excluded 25 because

their gold-standard analyses in the current version of ERG were unavailable in our exper-
imentation setup where the input of the parser consists of micro-tokens instead of initial
tokens.
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boundaries and 8.7% with automatically assigned token boundaries. There is
no noticeable differences in coverage between the three configurations. The
differences in accuracy are also very small.

The results in Table 5.2 suggest that: (a) there is small gains in parsing
efficiency from integrating ERG token boundaries with parsing, and (b) these
gains are similar when using gold-standard and automatically assigned token
boundaries. These results prove that, in practice, our ERG tokenization model
is good enough to enable ERG lexical categorization and parsing. Possibly, more
improvements in parsing can be attained by using n-best token boundaries,
however, this shall be investigated in future work.

In the rest of this chapter, we focus on integrating lexical categories
with parsing using gold-standard ERG token boundaries because our lexical
categorization models were trained on gold-standard ERG token boundaries.

5.4 Lexical Categories Integration

Dridan (2009) investigated using ERG lexical categories to impose hard con-
straints on the parser. She used lexical categories, from the eight degrees
of granularities (cf. Table 4.1), to improve parsing efficiency, accuracy and
coverage. Furthermore, she experimented with using single-, multiple- and
selective-taggers (cf. § 2.2.3).

Dridan (2009) reports that POS4 single tags led to a three-fold speed-up
in parsing time but at the cost of 8% in coverage. She also finds that multiple
le-type tags can achieve very high speed-up, but multiple POS tags give the
best absolute coverage with relatively minor speed increases. In selective
tagging, she shows that le-types can lead to a 12-fold speed-up but at the
cost of losing up to 30% in coverage. However, selective POS+morph tags can
increase efficiency by 50% while maintaining coverage and accuracy. Dridan
(2009) concludes that modest efficiency increases are possible using lexical
restriction.

In this section we show that significant efficiency gains with lexical restric-
tion are actually attainable. Our results, however, are not directly comparable
to Dridan (2009) because she: (a) used a different version of ERG, (b) trained
and tested on different data sets, (c) used initial tokens (PTB-like) instead of
lexical tokens (ERG-like).

We experiment with two configurations of using lexical categories to restrict
the parser search space. First, using the major syntactic categories assigned by
the model we developed in § 4.4. Second, using the lexical types assigned by
the model we developed in § 4.3. In all configurations our comparison reference
point is the unrestricted parser with gold-standard ERG token boundaries,
because our lexical categorization models use ERG token boundaries. To define
upper bounds for our experiments, we restrict the parser with gold-standard

4Note that Dridan (2009) used the term ‘POS’ for major syntactic categories (MSC).
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Table 5.3: Parsing efficiency, coverage and accuracy using gold-standard major
syntactic categories and lexical types.

Efficiency Coverage Accuracy
Seconds % Exact matches PARSEVAL

Unrestricted 19 97.6 345 87.8
Gold MSC 4.31 99.9 400 90.1
Gold le-type 0.87 100 585 93.4

Table 5.4: Parsing efficiency, coverage and accuracy with n-best major syntactic
categories

Efficiency Coverage Accuracy
Seconds % Exact matches PARSEVAL

Unrestricted 19.00 97.6 345 87.8
1-best 4.00 91.6 305 84.0
2-best 4.67 95.5 333 86.3
5-best 6.59 98.3 352 87.3

major syntactic categories and lexical types. Table 5.3 shows the efficiency,
coverage and accuracy attained by using gold-standard MSCs and le-types.

Both MSCs and le-types promise noticeable improvements on the three
dimensions of parsing evaluation, accuracy, coverage and efficiency. In the
following two sections, we assess how close to the upper bounds we land using
automatically assigned major syntactic categories and lexical types.

5.4.1 Major Syntactic Categories Integration

In § 4.4, we developed a CRF model to assign major syntactic categories that
achieves an accuracy of 98.01% (on DeepBank section 21). Now, we shall
determine the usefulness of such a model for the parsing task, i.e. investigate
how an MSC accuracy of 98.01% per token would be reflected on parsing
efficiency, coverage and accuracy.

Table 5.4 shows the results of restricting the parser search space using
1-best, 2-best and 5-best lists of major syntactic categories assigned by the
MSC model.

With 1-best MSCs, we see a reduction of 79% in parsing time but at the cost
of 6 points coverage and 3.8 points in PAREVAL (labeled brackets). However,
with 5-best lists, the parsing time is reduced by 65% and coverage is increased
by 0.7 point, at the cost of 0.5 point in PARSEVAL accuracy, but it is worth
observing that the number of exact matches increases.

In § 4.4.1, we reported that the lexical type model (le-type) achieves an
accuracy just as high as the MSC model when evaluated based only on the
correctness of the MSC fields of the lexical types it assigns. As those two models
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Table 5.5: Parsing efficiency, coverage and accuracy with major syntactic
categories of n-best lexical types

Efficiency Coverage Accuracy
Seconds % Exact matches PARSEVAL

Unrestricted 19.00 97.6 345 87.8
1-best 4.01 90.5 300 83.1
2-best 4.19 92.6 317 84.5
5-best 6.64 95.3 337 86.1

achieve the same level of accuracy, we compare their effects on parsing to see
whether they also achieve the same level of improvement on parsing. Hence,
we evaluate using the MSCs of the lexical types assigned by the le-type model
(LE-MSC, henceforth) to restrict the parser search space. Table 5.5 shows the
results of experimenting with 1-best, 2-best and 5-best lists of LE-MSCs.

From Table 5.5 we see that 1-best LE-MSC achieves the same level of
efficiency as 1-best MSC, however at the cost of 8 points in coverage and 4.7
points in accuracy. Furthermore, 5-best LE-MSC lists achieves almost the
same level of efficiency as 5-best MSC but at higher costs of coverage and
accuracy. In fact, 5-best LE-MSC leads to the coverage and accuracy of 2-best
MSC; the reason is that when we generate the n-best lists in the le-type model,
most lexical types would differ in the subcategorization and description fields
but not in the MSC field. Hence, the ambiguity in the 5-best LE-MSC lists is
lower than that in the 5-best MSC lists. In concrete terms, in the 5-best lists
of LE-MSC each word is assigned 1.01 MSCs, whereas in the 5-best lists of
MSCs each token receives 1.18 MSCs.

Given the results in Table 5.4 and Table 5.5, we can conclude: in practice
the MSC model is better than the le-type model in assigning major syntactic
categories.

A common method to restrict parsing systems with imperfect taggers or
supertaggers is so-called selective tagging; in this method, only lexical categories
with a confidence (or probability) level higher than a predefined threshold (β)
would be used in restricting the parser search space. We experiment with using
selective tagging for major syntactic categories with various thresholds (β).

Table 5.6 shows that selective MSCs with β = 0.95 can improve parsing
efficiency and coverage with no loss in accuracy. In addition, selective MSCs
with β = 0.95 achieves the same level of efficiency as 5-best lists MSCs and with
slightly higher scores in coverage and accuracy. Selective tagging, moreover,
has a major advantage over multiple tagging (n-best lists) because the latter
is computationally expensive to generate, whereas selective tagging is just a
matter of pruning the 1-best list of MSCs.

In Figure 5.1 we draw the relations coverage vs. efficiency and accuracy vs.
efficiency, using selective MSCs with different thresholds from β = 0.50 up to
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Table 5.6: Parsing efficiency, coverage and accuracy with selective major
syntactic categories

Efficiency Coverage Accuracy
Seconds % Exact matches PARSEVAL

Unrestricted 19 97.6 345 87.8
β=0.80 4.87 96.4 340 86.9
β=0.85 5.11 97.0 340 87.0
β=0.90 5.39 97.6 349 87.4
β=0.95 6.34 98.6 351 87.8
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Figure 5.1: Efficiency vs. coverage and efficiency vs. accuracy with selective
MSCs. Note that each bullet (•) on the curves marks a β value as follows:
0.5,0.6,0.7,0.8,0.85,0.90,0.91. . . 0.98,0.99.

β = 0.99.
From Figure 5.1 we see that significant improvements in efficiency are

achievable with no losses in accuracy and coverage. However, if less than 6
seconds is preferred for parsing a sentence, then one would have to give up
some coverage and accuracy in return.

Finally, Table 5.7 presents detailed parsing efficiency results with selective
MSCs (β = 0.95).

From Table 5.7 we see that the reduction in parsing time is proportional
to the sentence length, which is exactly what we wish parser restriction would
do. This result is particularly interesting as parsing time-outs usually happen
when the sentence is relatively long (cf. Figure 5.3).
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Table 5.7: Detailed parsing efficiency with selective major syntactic categories
β=0.95

Unrestricted β=0.95 Reduction
Aggregate Seconds Seconds %
40 ≤ length < 60 146.15 41.52 71.6
20 ≤ length < 40 36.11 11.81 67.3
0 ≤ length < 20 1.83 1.01 44.5

Total 19.00 6.34 66.6

Table 5.8: Parsing efficiency, coverage and accuracy with selective lexical types

Efficiency Coverage Accuracy
Seconds % Exact matches PARSEVAL

Unrestricted 19.00 97.6 345 87.8
β=0.80 1.35 89.3 366 84.2
β=0.85 1.54 92.2 374 85.7
β=0.90 1.97 94.7 383 86.8
β=0.95 3.01 97.8 395 88.3

5.4.2 Lexical Types Integration

In this section we study the effect of lexical types assigned by our lexical type
model (le-type model; § 4.3) on parsing efficiency, coverage and accuracy.

From the previous section, we learnt that selective tagging is the best
choice for integrating imperfect lexical categorization models with parsers.
Furthermore, the accuracy of the le-type model (92.84% on DeepBank section
21) is far less that of the MSC model and the computational cost for generating
n-best lists of lexical types is quite expensive. Therefore, in this section we
only experiment with selective lexical types.

Table 5.8 shows the results of restricting the parser using selective lexical
types with several thresholds.

Selective lexical types with β = 0.95 achieves the highest reduction in
parsing time while maintaining coverage and accuracy, if not increasing them
as well. It reduces parsing time by 84% and increases coverage by 0.2 point
and accuracy by 0.5 point. The number of exact matches also increases from
345 to 395.

In Figure 5.2 we draw the changes of accuracy and coverage with efficiency
using selective lexical types with β from 0.5 to 0.99.

From Figure 5.2 we see that rather high increases in efficiency are achievable
without any losses in accuracy or coverage. We can also see that giving up
efficiency until we reach 4.5 seconds per sentence helps improve accuracy and
coverage, but thereafter the accuracy and coverage curves flatten out. The
reason behind this behavior is that the last bullets on the curves correspond to
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Figure 5.2: Efficiency vs. coverage and efficiency vs. accuracy with selective
lexical types. Note that each bullet (•) on the curves marks a β value as
follows: 0.5,0.6,0.7,0.8,0.85,0.90,0.91. . . 0.98, 0.99.

high confidence thresholds (0.97, 0.98 and 0.99), hence the number of lexical
types selected to restrict the parser significantly decreases.

Finally, we believe that the potentials of parsing improvement are even
higher with the standard parsing mode which only allows 60 seconds for the
parser to time-out. As mentioned in § 5.2, we run all the integration experiments
using the development mode, hence the parser is given four minutes to analyze
a sentence.

Figure 5.3 and Figure 5.4 illustrate the parsing times of all sentences in
our test set using the unrestricted parser and restricted parser with selective
lexical types (β = 0.95).

From Figure 5.3 and Figure 5.4 we can easily see the significance of re-
stricting the parser search space in the standard mode.

5.5 Summary

In this chapter we studied integrating our tokenization and lexical categorization
models with ERG parsing, using their outputs as hard constraints to restrict
the parser search space. We showed that using ERG token boundaries leads to
minor improvements in parsing efficiency without any losses in coverage and
accuracy.

In lexical categories integration, we found that selective tagging with both
major syntactic categories and lexical types delivers better results than single
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Figure 5.3: Parsing times using the unrestricted parser
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Figure 5.4: Parsing times with selective lexical types β = 0.95
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and multiple tagging, which is in line with the findings of Dridan (2009).
Our experiments prove that major syntactic categories and lexical types

can significantly improve parsing efficiency. Selective major syntactic categories
(β = 0.95) reduces parsing time by 66% and increases coverage by 1 point
while maintaining accuracy. Selective lexical types (β = 0.95), on the other
hand, reduces parsing time by 84% with small improvements in coverage and
accuracy, showing that sometimes there is a ‘free lunch’ in machine learning.5

All in all, our parser integration experiments showed pronounced improve-
ments over what Dridan (2009) reported, which can be attributed to: (a)
difference in the experimental setup, e.g. we didn’t make any code changes
to the PET parser while Dridan (2009) did, (b) differences in the tokeniza-
tion schemes, i.e. the use of lexical tokens vs. initial tokens, (c) the mapping
from generic to native lexical types (cf. § 4.3), (d) more sophisticated machine
learning algorithms (CRFs vs. MaxEnt and HMM), e.g. Dridan (2009) found that
the C&C supertagger gives better results than the TnT tagger when she used
the underlying probability distribution of each model to guide tag assignment,
hence it might be that CRFs perform quite well in assigning tag probabilities.

5No Free Lunch Theorems (Wolpert & Macready, 1997).
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Chapter 6

Conclusion

The HPSG ERG—being a broad-coverage grammar in the context of detailed
syntacto-semantic analyses—defines tokenization and lexical categorization
regimes that diverge from the classic conceptions of such tasks. Both ERG
tokenization and lexical categorization, to varying degrees, blend aspects of
syntactic analysis. ERG tokenization recognizes multi-word expressions, hence
the whitespace is no longer a sufficient or necessary word separator. ERG lexical
categories more overtly encode syntactic properties in addition to morphological
and lexical information.

In this thesis, we investigated the use of Conditional Random Fields (CRFs),
a somewhat recent ‘trend’ in sequence labeling, to model the rather challenging
ERG conception of tokenization and lexical categorization.

In Chapter 2, we presented a theoretical background on sequence labeling
in general and CRFs in particular. We briefly introduced some aspects of the
ERG parsing pipeline and reviewed previous related work.

The subtleties of the tokenization task, variability in common tokenization
schemes, and their potential impact on the downstream processing inspired
our investigation of a data-driven approach towards tokenization in Chapter 3.
We showed that tokenization comprises a range of challenges and opportunities
that should be equally amenable to careful engineering and experimentation as
other NLP tasks—especially if one to consider the far more challenging view
on tokenization of ERG.

We reported state-of-the-art results in PTB tokenization and showed that
domain-adaptable tokenization models in a sequence labeling approach can
achieve very high accuracies, and generally outperform state-of-the-art rule-
based systems. Further, we presented a tokenization model for ERG, that even
though didn’t achieve the same level of accuracy as our PTB tokenization model,
it was accurate enough to serve as a front-end for the parser, and even to
improve its efficiency.

Our tokenization toolkit with pre-trained PTB and ERG models will be
released within the DELPH-IN open source repository, either for stand-alone
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use (PTB tokenization) or for integration into the ERG parsing pipeline or the
parsers of Zhang and Krieger (2011); Ytrestøl (2011); Evensberget (2012).

The intricacy of ERG lexical categorization on the one hand, and the
superiority of CRFs in different NLP tasks on the other hand, motivated our
research on using CRFs to model the task of ERG lexical categorization in
Chapter 4.

We studied ERG lexical categorization on two levels of linguistic granularity,
major syntactic categories and lexical types. On the lexical type level, we
presented a detailed study on candidate features to learn ERG lexical types,
and reported the accuracy, main memory requirement and training time for
eleven models trained with different combinations of these features. We also
showed that the use of a few CRF bigram features to learn the ERG lexical types,
is very expensive and leads to minor improvements in accuracy. Although
our simulation of constrained decoding for the CRF lexical type model didn’t
substantially improve accuracy, we still believe that constrained CRFs might
help reduce the training and decoding times of CRFs (cf. below). In comparing
our CRF model to the C&C supertagger, we found that the CRF-mimicry of the
C&C supertagger is significantly more accurate than C&C, however at the cost
of longer training times.

In the major syntactic category experiments, our CRF model delivered high
accuracy with 1-best decoding and near-perfect accuracy with 5-best lists of
major syntactic categories. We showed that applying the ERG derivational
morphological rules to change major syntactic categories doesn’t lead to im-
provement in accuracy, which suggested that most of the MSC errors are
independent of derivational morphological properties.

We presented the specified lexical types approach by dividing the set
of lexical types into eleven mutually exclusive but interacting sets. In this
approach, we substantially reduced the training time and memory requirements
to the extent that training on more than 22 million words became feasible. We
also confirmed the findings of Ytrestøl (2012) that training only on very large
amounts of automatically annotated data can achieve relatively competitive
accuracies, especially on out-of-domain data, in comparison to training on
manually annotated data.

The ultimate aim of improving ERG parsing was discussed in Chapter 5. We
experimented with using our tokenization and lexical categorization models
to prune the ERG parser search space. We saw the classic tradeoff, accuracy
vs. efficiency, but also selective tagging models offered us a ‘free lunch’ by
improving parsing efficiency, accuracy and coverage all at once.

We showed that using ERG token boundaries leads to about 8% reduction
in parsing time without any losses in coverage and accuracy. The integration
of lexical categories, however, led to more pronounced efficiency improvements,
with selective lexical types reducing parsing time by 84% and slightly increasing
coverage and accuracy. We also showed that richer linguistic granularity can
lead to greater gains in parser improvement, evidenced by the results of using

84



6.1. Future Work

of major syntactic categories vs. lexical types to prune the parser search space.

6.1 Future Work
While a certain degree of feature engineering has been invested during our
tokenization experiments, we believe that further (empirical) improvements
can be made in the design of the sequence labeler, e.g. to copy the period
following certain abbreviations (if strict compliance to the WSJ section of the
PTB were the goal). Also, extra labels could be introduced in the sequence
labeler to achieve certain rewriting operations (in a sense similar to that of a
finite-state transducer).

The ERG lexicon provides us with valuable information that can be exploited
to constraint the ERG tokenization model, i.e. extract a set of multi-word tokens
from the ERG lexicon. Given this information, one can constrain CRFs in a way
similar to our simulation of constrained decoding for lexical categories or in an
actual implementation of constrained CRFs.

In addition, examining the generalizations of our tokenization models and
mismatches against gold-standard annotations, already has proven a useful
technique in the identification of inconsistencies and errors within existing
resources. Hence, one can investigate the benefit of our models as a feedback
mechanism to resource creation, i.e. error detection in annotated corpora.

In the specified lexical type setup, due to time constraints, we trained only
two specified lexical type models on the NANC data (§ 4.5.2). Training all of the
specified lexical type models on NANC data needs to be done in future work and
possibly augmented with a constrained decoding strategy. Moreover, training
our specified lexical type models on 22.5 million words took 3.6 days, one can
also try training up to one month, as Ytrestøl (2012) did, to define an upper
limit for CRFs scalability and possible accuracy gains from training on massive
amounts of automatically generated training data.

The pattern of the ERG lexical types allows the use of ensemble learning
approaches; while we touched upon this idea in § 4.3.5, we believe it still needs
comprehensive and careful experimentation.

In combining the outputs of the specified lexical type models, one can also
generate the n-best lists of all models, then exploit the probabilities (confidence
scores) associated with these outputs in order to aggregate the final output.
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Appendix A

Generic to Native Mapping

Generic to Native Lexical Types Mapping Rules
The DeepBank was created by automatically parsing the WSJ text, and then
manually correcting or disambiguating the output of the parser. One side
effect of this methodology in the ERG realm is that unknown words would be
assigned so-called ‘generic lexical entries’ (in contrast to known words which
are assigned ‘native lexical entries’). The generic lexical entries are essentially
underspecified lexical entries instantiated to fill the gaps in the lexical chart,
i.e. fill the input positions for which no native entries were found.

In the following, Table A.1, we present the mapping rules we used to convert
all generic lexical types in DeepBank to their corresponding native ones.
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Table A.1: Generic to native lexical type mapping rules

Generic Lexical Type Native Lexical Type
aj_-_i-cmp-unk_le aj_pp_i-cmp_le
aj_-_i-crd-gen_le aj_-_i-crd-two_le
aj_-_i-crd-unk_le aj_-_i-crd-two_le
aj_-_i-frct-gen_le aj_-_i-frct_le
aj_-_i-ord-gen_le aj_-_i-ord-two_le
aj_-_i-sup-unk_le aj_-_i-sup_le
aj_-_i-unk_le aj_-_i_le
aj_np_i-crd-gen_le aj_np_i-crd-nsp_le
av_-_dc-like-unk_le av_-_dc-like-pr_le
av_-_i-unk_le av_-_i-vp_le
n_-_c-pl-gen_le n_pl_olr
n_-_c-pl-unk_le n_pl_olr
n_-_day-crd-gen_le n_-_c-day_le
n_-_mc-ns-g_le n_-_mc-ns_le
n_-_mc-unk_le n_-_mc_le
n_-_meas-n-gen_le n_-_c-meas_le
n_-_pn-dom-e-gen_le n_-_pn-dom-euro_le
n_-_pn-dom-gen_le n_-_pn-dom-card_le
n_-_pn-dom-o-gen_le n_-_pn-dom-ord_le
n_-_pn-gen_le n_-_pn_le
n_-_pn-pl-unk_le n_-_pn-pl_le
n_-_pn-unk_le n_-_pn_le
n_np_pn-hour-gen_le n_-_pn-hour_le
v_-_pas-unk_le v_-_psv_le
v_np*_bse-unk_le v_n3s-bse_ilr
v_np*_pa-unk_le v_pst_olr
v_np*_pr-3s-unk_le v_3s-fin_olr
v_np*_pr-n3s-unk_le v_n3s-bse_ilr
v_np*_prp-unk_le v_prp_olr
v_np*_psp-unk_le v_psp_olr
v_np*_unk_le v_np*_le
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