# (D)MRS Comparison 

Mathieu Morey

Aix-Marseille University

DELPH-IN summit

## Acknowledgments and current situation

Work done at Nanyang Technological University with Francis Bond, with financial support by the Erasmus Mundus MULTI program via the Laboratoire Parole et Langage at Aix-Marseille University.

Currently working at the Laboratoire d'Informatique Fondamentale in Aix-Marseille University on a speech-to-speech translation project: graph-based syntactic dependency parsing and semantic role labelling.

## Motivation

General need to compare arbitrarily dissimilar (D)MRSs:

- treebanking,
- cross-lingual parse disambiguation (Frermann and Bond 2012),
- extraction of transfer rules (Haugereid and Bond 2012),
- paraphrase detection


## Example：Cross－lingual Disambiguation <br> 望遠鏡でガードを見た：J





I saw the guard with the telescope： E


## Example：Cross－lingual Disambiguation

望遠鏡でガードを見た：J


Transfer： $\mathrm{E}(\mathrm{J})_{M R S}$

$\left[\begin{array}{ll}\text { past } & \\ \text { see } & {\left[\begin{array}{l}\text { PRON } \\ \text { guard }\end{array}\right]} \\ \text { LOC } & {\left[\begin{array}{l}\text { see } \\ \text { telescope }\end{array}\right]}\end{array}\right]$

I saw the guard with the telescope： E


## Comparing MRSs from bitexts

- Tanaka Corpus: Japanese-English parallel corpus (147,190 Sentence pairs)
- English side parsed with the ERG,
- Japanese side parsed with Jacy,
- Japanese MRSs partially transferred to English MRSs with Jaen.


## Transfer system

- Transfer rules are rewriting rules that operate on subparts of MRS structures
- Many rules are simple predicate changing rules:
- same category: "_hon_n_rel" $\Rightarrow$ "_book_n_1_rel"
- different categories: adjective $\Rightarrow$ intransitive verb
- Other rules are more complex, and may transfer one-to-many Japanese relations into one-to-many English relations:
- noun + noun $\Rightarrow$ noun: "[minor] [test]" $\Rightarrow$ "quiz"
- noun + adj $\Rightarrow$ adj: "[much] [snow]" $\Rightarrow$ "snowy"
- The Jaen transfer system is made of
- 1,415 hand-written transfer rules for function words, pronouns, time expressions, spatial expressions, proper nouns, and the most common open class items
- 190,356 rules automatically extracted from parallel corpora


## MRS comparison: Bags of predicates

- Consider an MRS as a bag of predicates.
- The best aligning MRSes are the ones that share the highest proportion of predicates.
- Cross-lingual disambiguation: ignored grammatical predicates
- Results: slight improvement over the baseline (monolingually trained stochastic models) for both an intrinsic and an extrinsic evaluation tasks.
- Pros:
- Elementary predicate matching solves part of the lexical ambiguity,
- Simple and computationally cheap.
- Cons:
- Very dependent on the lexical coverage of the translation rules,
- Discards all structural (predicate-argument) information: The cat chases the mouse $\equiv$ The mouse chases the cat.


## MRS comparison: Bags of elementary dependencies

- Consider an MRS as a bag of elementary dependencies.
- The best aligning MRSes are the ones that share the highest proportion of elementary dependencies.
- Did not work so well for cross-lingual disambiguation.
- Pros:
- Elementary dependency matching captures individual predicate-argument relations,
- Simple and computationally cheap.
- Cons:
- Still dependent on the lexical coverage of the translation rules,
- Very local view of structural information


## MRS comparison: Inexact graph matching

- MRSs can be viewed as (directed acyclic) graphs
- MRS comparison can be seen as inexact graph matching
- MRSs exhibit properties such as DAGness, relatively small size, finite number of possible labels. . . that help to limit the algorithmic complexity in practice.


## Inexact MRS matching



## MRS comparison: Graph edit distance

Differences between MRSs can be formulated in terms of graph edit operations, with associated costs:

- insertion/deletion of predicates,
- insertion/deletion of (argument) links,
- substitution of predicates, cost according to a SEM-I- or WordNet-based distance.


## MRS edit distance

## Pros:

- accounts for structural differences,
- captures transfer rules as sequences of graph edit operations $\rightsquigarrow$ could be used to acquires transfer rules

Cons:

- finding the most appropriate edit costs is not trivial,
- in practice, computing the graph edit distance between MRSs exhaustively and exactly is too expensive


## Practical challenges: Computation

Inexact graph edit distance is NP-hard

- A naive encoding of MRSs generates graphs that are unnecessarily and prohibitively large;
- help: DMRS provides a concise encoding
- A concise encoding helps but does not suffice for long sentences (> 30 words).
- Approximate solutions:
- approximate the graph by a tree and use an inexact tree matching algorithm,
- approximate the graph by a collection of small subgraphs and use inexact graph matching on these,
- use approximate binary/integer (linear) programming...


## Practical challenges: Grammars

MRSs output by Jacy+Jaen are quite different from MRSs output by the ERG.

- Cross-lingual and cross-grammar differences
- Grammars use different (versions of the same) design principles and (naming) conventions
- help: grammar documentation, SEM-I, sanity checks
- Some rules in Jaen lose part of the structure
- ex: silent deletion of an argument link (dangling QEQ), merged labels (self QEQ),
- help: more error flagging by the transfer engines ? well-formedness checks on the partially transferred MRSs


## Conclusion

(D)MRS comparison is feasible:

- exactly for short sentences and very similar MRSs (code and first results on parse disambiguation soon),
- inexactly otherwise (lots of work for anyone interested).

Strongly linked to hot topics:

- SEM-I,
- WordNet - ERG links,
- MRS sanity checks: well-formedness etc.


## SEM-I: quiz

- "_about_a_1_rel" : ARG0 e, ARG1 i, ARG2 h.
- "_about_a_1_rel" : ARG0 e, ARG1 h.
- "_acceptable_a_for_rel" : ARG0 e, ARG1 p, ARG2 i.
- "_acceptable_a_for_rel" : ARG0 e, ARG1 e.
- "_acceptable_a_for_rel" : ARG0 e, ARG1 h.

How many different predicates?
Important for (D)MRS comparison, transfer, conversion from DMRS to MRS.

