
Site report:

Research Group in Digital Linguistics

at NTNU, Trondheim, Norway
http://www.ntnu.no/web/isk/digital-linguistics

Lars Hellan

DELPH-IN meeting, July 29, 2013

Saarbrücken/ St. Wendel

http://www.ntnu.no/web/isk/digital-linguistics�
http://www.ntnu.no/web/isk/digital-linguistics�
http://www.ntnu.no/web/isk/digital-linguistics�

Members of group at NTNU

Dorothee Beermann
Tore Bruland
Lars Hellan

Mads H. Sandøy
Elias Aamot

Members of group abroad

Dan Flickinger, Stanford
Pavel Mihaylov, Sofia

Mary Esther Kropp Dakubu, Accra

Activities

Basic:

Grammar engineering, with large and small ‘Matrix’ grammars, and

experimental general designs

Tool development for online annotation

Design of typological construction-classification systems

Extensions (by slide numbers of presentation):

- Deriving verb valence repositories(mono- and multi-lingual) (5-10)

- Defining semantic spaces for situation types and roles (11-15)

- Construction of pipelines from grammar-produced MRS to knowledge bases and

‘real world’ scenarios (16)

- Induction of grammars from ‘flat’ annotation and implemented ‘UG’ (17-24)

- Construction of e-learning tools based on Matrix grammars (25-30)

other ‘Matrix’ grammars

Multilingual valence repository Multilingual e-learning tools

……….

valence repository for Norwegian and Ga e-learning tool for Norwegian

Norsource – large grammar of Norwegian, GaGram – small grammar of Ga

MRS in ‘real world’ pipelines

‘Deep’ HPSG grammar formalism & LKB

Construction Labeling System

TypeGram – ‘pan’-grammar with universal scope

Grammar induction – from ‘UG’ and flat annotation, with ‘real’ and ‘meta-’ morphology

TypeCraft (http://typecraft.org)

http://regdili.idi.ntnu.no:8080/vpbwebdemo/parse�
http://typecraft.org/�

Valence profile (v-profile)
• We assume a combination of ‘formal’ and ‘functional’

characterization of verb valence, such that, for example, a notion
like ‘standard transitive’ (with NP subject and NP object) can be
represented from the formal side as something like ‘NP+NP’, from
the functional side as ‘transitive’ (as a notion implying the existence
of a subject and an object), and in a combined fashion as ‘v-tr-
suN_obN’. Many more parameters will be relevant in a valence type
specification, and the number of verb-valence types can be
estimated to lie between 200 and 300 for a language, and the
assembly of such types we may call the valence profile (v-profile) of
the language.

• A multilingual valence type inventory will in principle have the same
architecture, only with an additional parameter of languages.

• http://regdili.idi.ntnu.no:8080/multilanguage_valence_demo/multi
valence

http://regdili.idi.ntnu.no:8080/multilanguage_valence_demo/multivalence�
http://regdili.idi.ntnu.no:8080/multilanguage_valence_demo/multivalence�

Import from a computational grammar – 1a
Strategy 1. Populating the databases based on Lexical (valence) types:

• One makes a correspondence list with members like (i) and (ii) below.
• To the left of each arrow is a valence type name, as employed in the grammar, and

the lines to the right state ‘expansions’ of the type name, in the more perspicuous
format entered in the database:

(i) v-intrImpers => SAS: "EXPL"
FS: impersonal
Sit: weatherProcess
Example of type: det regner

(ii) v-intrImpersPrtcl => SAS: "EXPL+adpos"
FS: impersonal
Sit: weatherProcess
Example of type: det klarner opp

…

Import from a computational grammar – 1b

• Populating the column ‘Example_of_type’ is easy, since a v-
profile is quite limited. Automatic import to it is possible in
the following way: a grammar of this type normally has
various test-suites, one of which may be for reflecting vale All
'Examples_of_types' receive a morpheme level annotation in TypeCraft, adding a
further level of annotation. nce frames in the language. If such a
valence test-suite is indexed for the valence type of each
sentence, the sentences might be selected for the their
respective ‘Example_of_type’ occurrences through automatic
selection from the test-suite.

• Since the list is limited, entering the sentences one by one, as
in the slide above, is also feasible. All 'Examples_of_types'
receive a morpheme level annotation in TypeCraft, adding a
further level of annotation.

Import from a computational grammar - 2
Strategy 2. Using AVMs

• From the AVM of each verb as defined by the grammar (with unification and type
resolution performed), SAS, FS and Sit can be assigned for each verb. Here a fixed
constellation of paths of AVMs is run through for every lexical entry, delivering
results defined within the same repertoire as used on Strategy 1. For instance, to
induce the SAS of “snø”, the procedure would base itself on the following AVM -
SAS correspondence:

[SYNSEM.LOCAL.CAT.VAL.SUBJ.FIRST.LOCAL.CAT.HEAD expl-pron, => “EXPL”
SYNSEM.LOCAL.CAT.VAL.COMPS null,
SYNSEM.LOCAL.CAT.VAL.ICOMPS null]

This strategy ignores the verb types of the entries, so that the content of each slot
is inferred directly from the feature structure of the verb. While LKB grammars
largely use distinct lexical types, but have in common the basic AVM structures,
strategy 2 may conceivably require less alternating scripts across LKB grammars
than strategy 1 will. Also here, the slot ‘Example’ will not get filled, for the same
reason as above.

’Sit-types’

• We are assuming that situation types can be
included in valence description.

• While grammatical valence frames can be
projected from normal ’deep’ grammars, it is
less obvious that situation types can be, since
they are rarely included in functioning
grammars.

• We here show a possible format for
representation of situation types.

Excerpt of a possible situation-type hierarchy

locomotion effort targeting
[MOVER entity] [ACTOR entity] [TARGET entity]

selfsustainedLocomotion

actorLocomotion endpoint
[ACTOR #1, [ENDPT entity]
MOVER #1]

locomotionEndpt launching
[LAUNCHED entity]

ejection entrainedLaunch
[MOVER #1, [MOVER #1,
LAUNCHED #1] LAUNCHED #1]

ballistHit entrainedLaunchHit

drip run, walk, go travel-to-Berlin throw, sling shoot kick, punch

Modeling situation types
 When establishing correspondences between valence types and situation types,

one has to avoid that the labels for situation types get too tightly linked to actual
words used in one or more languages, that is, that the situation type inventory
becomes circularly dependent on the inventory of linguistic constructs to be
analyzed.

 Moreover, a typology of situation types will range from the very general to the
very specific, and regardless of generality level, a situation type will be tied to a set
of ‘participant roles’ characteristic of the type. Subsumption relations of situation
types can be reflected in the roles, such that, e.g., situation types corresponding to
stand, seat, and lay, subsumed by a situation type PLACEMENT, will share the roles
of PLACEMENT, but with further specification in terms of posture of the ‘placed’
item.

• A standard way of modeling subsumption factors is by means of multiple
inheritance hierarchies, where an attribute, in this case standing for a participant
role, can be introduced only with one type, but be inherited by all the subtypes of
that type. The next slide illustrates this design, for a very small segment of a
possible situation type hierarchy. The architecture illustrated is that of the LKB
formalism. Relative to this architecture, the figure also illustrates what replaces
words in the analytic formalism, namely attributes (indicating parameters to be
specified) and values, both in a ‘universal’ terminology independent of any specific
language.

• Given the formal principles of the LKB system, there will be strict ties
between situation types and roles: each role is licensed by a specific
situation type, and thereby licensed for any of its subtypes, and a rich
multiple inheritance system is what allows for the desired co-
specifications of roles when relevant. In this respect the system is far
stricter than any comparable system in this domain, with the inventory of
situation types consistently balanced against (but considerably larger
than) the inventory of participant roles.

• The significance of keeping situation types separate from word inventories
still cannot be underestimated. A common situation illustrating the point
is where one and the same situation type is cast in different valence
frames (or differently ‘profiled’) across languages (with no indication of
‘frame alternations’ intervening). One example is seen in the next slide,
where the situation type PLACEMENT is associated with a double object
pattern in Ga, and an “NP+NP+PP” pattern in English. Clearly, the situation
type PLACEMENT is here the same, independently of whether the
syntactic frame is “NP+NP+NP” or “NP+NP+PP” (and independently of the
role distribution among the last two constituents, and thus dissociated
from word encodings such as put vs. wo).

[v-ditr-obPostp-suAg_obEndpt_ob2Mover-PLACEMENT]

Amɛ-wo tsɔne lɛ mli yɛlɛ
3P.AOR-put vehicle DEF inside yam
V N Art N N

‘They put [vehicle’s inside] [yam]’
=‘They put yams in the lorry.’

’Placement’ construction in Ga

Talking to a ’box world’ via MRS

Inducing grammatical types and rules from construction types,
valence-types and valence-profiles of a language, given a defined

classification system
From a valence-profile, or a set of valence-types of a language, one can induce
lexical types for its grammar (examples for Ga):

v-ditr-suAg_obAff_ob2Instr-CUTTING
v-ditr-suAg_obLoc_ob2Res-CUTTING
v-ditr-suAg_obTh_ob2Instr-PENETRATION
v-ditr-suAg_obTrgt_ob2Endpt-COMMUNICATION
v-ditr-suAg_iobTrgt_obThmover-COMMUNICATION
vHab-ditr-suNrg_ob2DECLcmp-obSens_ob2Thsit-COGNITION

Types of syntactic constructions, such as Serial Verbs (from Akan)
svAspID-v1tr-v1obIDv2su-v1suAg_v1obEjct-v2tr-v2suTh_v2obEndpt-CONTACTEJECTION

can induce syntactic combinatorial rules for the grammar.

Classified morpho-lexical types, such as (for Citumbuka)
V-ditrCs-obCsu_ob2Cob-CAUSATION

can induce lexical rules for the grammar (here a rule of causativization in the
grammar of Citumbuka).

Illustrating an algorithmic linking system in terms
of tdl

v-ditr-obPostp-suAg_obEndpt_ob2Th-PLACEMENT :=
v & ditr & obPostp & suAg & obEndpt & ob2Th & PLACEMENT.

v := sign & [HEAD headverb].
ditr := ditr-lex.
obPostp := sign & [GF.OBJ poss-sign &

[ACTNTS.PRED spatial-coord_rel]].
suAg := sign & [GF.SUBJ.INDX.ROLE agent].
obEndpt := sign & [GF.OBJ.INDX #1 & [ROLE endpnt],

ACTNTS.DIR.ACT2 #1].
ob2Th := sign & [GF.OBJ.INDX.ROLE theme-locative].
PLACEMENT := sign & [SIT-TYPE placement_sit].

Ex.: v-tr-suAg_obAffincrem-COMPLETED_MONODEVMNT

v - - -
tr - - -

suAg - - -
obAffincrem - - -

COMPLETED_MONODEVMNT - - -

Illustrating the same system in terms of AVMs

[]HEAD verb

SUBJ INDX 1
GF

OBJ INDX 2

ACT1 1
ACTANTS

ACT2 2

   
   

       
 

  
  
   

[]GF SUBJ INDX ROLE agent      

[]GF OBJ INDX ROLE aff-increm      

ASPECT completed
SIT-TYPE monotonic_development
 
 
 

v-tr-suAg_obAffincrem-COMPLETED-MONODEVMNT
Ex.: He ate the cake

Unification result

[]

[]

HEAD verb

SUBJ INDX 1 ROLE agent
GF

OBJ INDX 2 ROLE aff-increm

ASPECT completed

ACT1 1
ACTANTS

ACT2 2
SIT-TYPE monotonic_development

 
 

      
       

 
 

  
  
   

 
  

To act as a parser, any of these induced partial grammars will
need to be supplemented by a lexicon and inflectional rules.
Rather than try to define such items too in a ‘universal’
repository, we induce them from IGTs of the language in
question.
Thus, from IGT, we induce
- a lexicon file for content words (open classes)
- a lexicon file for closed class words
- an inflection rules file

To illustrate, IGT annotations in TypeCraft (TC) are converted
into XML format and ported to the grammar under construction.
For instance, a perfective verb form like etee ‘gone’ with an
annotation as indicated in the TC annotation snippet below is
assigned a snippet of an XML as below; first a slide showing the
annotation interface of TypeCraft:

TypeCraft - Annotation User Interface (Beermann and Mihaylov)

Word etee

Morph e | tee

Meaning | go

Gloss PERF |

POS V

<word id="30409" text="etee" citation="etee">
<pos>V</pos>
<morpheme id="46593" text="eÌ�">

<gloss>PERF</gloss>
</morpheme>
<morpheme id="46594" text="tee" meaning="go"/>

</word>

tee-v := v-lxm & [STEM <"tee">, ACTNTS.PRED tee_rel].

verb-Perf_irule := %prefix (* e) word & [ASPECT perf, INPUT < v-lxm >].

Meta-strings and meta-items

At this point, we can also introduce what we may call a meta-grammar
instantiation of these files. In such files, we enter not the actual words
and morphemes of the language, but the gloss versions of these items,
as they are reflected in the IGT. Thus, what we import from the IGTs
are not actual morphs but their glosses.

go_v := v-lxm & [STEM <"go"> , ACTNTS.PRED go_rel].

verb-PFV_irule := %suffix (* PFV) word & [ASPECT perf, INPUT <
v-lxm >].

Correspondingly, the strings to be parsed by this grammar are ‘meta-
strings’, composed exclusively by gloss symbols. Such a string could
for instance be

man DEF goPFV

Constructing an e-learning tool from an LKB grammar

The Norwegian Online Grammar Sparrer is an online
language training tool developed at NTNU, with an indirect

access point via
http://typecraft.org/tc2wiki/A_Norwegian_Grammar_Sparrer

,
- which provides a general setting and references to various

resources on Norwegian, and as direct access point
http://129.241.111.247:8080/norsource/parseStudent .

It can also be reached via a button ‘Grammar checker’ on
each chapter page of the web-based L2 course NoW at

NTNU:
http://www.ntnu.edu/now .

http://typecraft.org/tc2wiki/A_Norwegian_Grammar_Sparrer�
http://129.241.111.247:8080/norsource/parseStudent�
http://www.ntnu.edu/now�

NorMal
• The system has been created by Lars Hellan, Tore

Bruland, Elias Aamot and Mads Hustad Sandøy, with
ample assistance by Dan Flickinger, starting late in
2010, throughout 2011 and till now, and builds on the
computational grammar NorSource of Norwegian,
developed at NTNU since 2001 (see
http://typecraft.org/tc2wiki/Norwegian_HPSG_gramm
ar_NorSource). A 'mal-apparatus' is built onto this
'bon'-grammar, together constituting the full system
'NorMal'. (Thus, all files of Norsource are used in
NorMal, while NorMal includes files not used in
Norsource.)

• The sparrer is accommodated in the TypeCraft web
interface.

http://typecraft.org/tc2wiki/Norwegian_HPSG_grammar_NorSource�
http://typecraft.org/tc2wiki/Norwegian_HPSG_grammar_NorSource�

The Procedure

• For each error sentence, a recommendation is
generated from the MRS of the NorMal-
parsed sentence.

• Both mal-rules and mal-lexical entries
introduce into the MRS exactly the same EP(s)
as their ’bon’-counterparts generally
introduce, whereby generation can produce
well-formed strings coming very close to the
intended form.

The procedure - 2
• Enter an ungrammatical sentence
• Receive an error message
• Select the first MRS and classify it with Utool
• If the MRS is accepted, a button to generate is displayed

The procedure – 3: Generate to Find Option(s)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Valence profile (v-profile)
	Slide Number 6
	Slide Number 7
	Import from a computational grammar – 1a
	Import from a computational grammar – 1b
	Import from a computational grammar - 2
	’Sit-types’
	Excerpt of a possible situation-type hierarchy
	Modeling situation types
	Slide Number 14
	’Placement’ construction in Ga
	Talking to a ’box world’ via MRS
	�Inducing grammatical types and rules from construction types, valence-types and valence-profiles of a language, given a defined classification system�
	Illustrating an algorithmic linking system in terms of tdl
	Illustrating the same system in terms of AVMs
	Unification result
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Constructing an e-learning tool from an LKB grammar
	Slide Number 26
	NorMal
	The Procedure
	The procedure - 2
	The procedure – 3: Generate to Find Option(s)

