

Sentence Realization with Unlexicalized Tree Linearization Grammars

Rui Wang (Joint work with Yi Zhang) DFKI GmbH, Germany

The Task

- Parsing
 - (Ordered) text → structure: tokenization, POS tagging, constituent/dependency parsing, ...
- Generation
 - (Unordered) structure → Text: content planning, lexical choices, surface realization, ...
- Syntactic dependency tree \rightarrow Linearization of tokens
 - Generation Challenge 2011 Surface Realization Shared Task (Belz et al., 2011)

An Example

- every dog chase some cat
- Every dog chases some cat .

Outline

- The basic model
- Problems
- Extensions
- Related/Future Work

The Basic Model

- Unlexicalized Tree Linearization Grammar
 - A set of linearization rules
 - Rule: (Local) configuration \rightarrow Linear order

Linearization

- For each configuration
 Apply the linearization rule
- For each subtree
 - The linearization is a continuous string

N-Best Linearization

 Heavy selling of Standard & Poor 's 500 - stock index futures in Chicago relentlessly beat stocks downward.

DELPH-IN 2013, St. Wendel

The Probabilistic Model

• For each LHS

$$\begin{aligned} \mathbf{Pr} : \mathscr{L} \to [0,1] s.t. \forall \mathscr{C} \in \mathscr{C}, & \sum_{\forall \mathscr{L} \in \mathscr{L}, LHS(\mathscr{L}) = \mathscr{C}} \mathbf{Pr}(\mathscr{L}) = 1 \\ \mathbf{Pr}(\mathscr{L}) = \frac{Freq(\mathscr{L})}{Freq(LHS(\mathscr{L}))} \end{aligned}$$

• For the subtree

$$P(\mathscr{L}_n) = \Pr(rule(\mathscr{L}_n)) * \prod_{d \in dependents(n)} P(\mathscr{L}_d)$$

DELPH-IN 2013, St. Wendel

Assumptions

- Connected
- Single-headed
- Projective

Evaluation

- Data: dependency treebanks from the CoNLL-shared task 2009 (Hajic et al., 2009)
- Evaluation metrics: BLEU (Papineni et al., 2002)

Sentence Coverage	451 / 1334 (33.8%)
Configuration Coverage	15843 / 17282 (91.7%)
1-best	92.65
Upper bound (1000)	96.31

Problems

- Out of grammar
 - Coarse-grained rules
 - Backup strategy
- In-grammar performance
 N gram based Smoothing
 - N-gram-based Smoothing

Out of Grammar

- Coarse-grained rules (POS \rightarrow CPOS)
- Backup models (Pair-wised ranking)

Models		POS	CPOS	
Coverage	rage Sent. (1334) 451 (33.8%)		711 (53.3%)	
	Conf. (17282)	15843 (91.7%)	16423 (95.0%)	
Covered	1-best	92.65	90.64	
	upper (1000)	96.31	95.31	
Overall	1-best	81.63	83.28	
	upper (1000)	84.08	87.13	

Examples

- Gold: [" The market is overvalued, not cheap, " says] Alan Gaines of the New York money - management firm Gaines Berland.
- System: Alan Gaines of the New York money management firm Gaines Berland [says, "The market is overvalued, not cheap."]
- Gold: ... than many taxpayers working at the same kinds of jobs and [perhaps] supporting families .
- System: ... than many taxpayers [perhaps] working at the same kinds of jobs and supporting families .
 29/7/13 DELPH-IN 2013, St. Wendel

Examples (cont.)

- Gold: ... to set **[aside]** provisions covering all its C\$ 1.17 billion in non Mexican LDC debt .
- System: ... to set provisions covering all C\$ its 1.17 billion in non - Mexican LDC debt [aside].
- Gold: Good service programs require recruitment, screening, training and supervision – [all of high quality].
- System: **[all of high quality]** Good service programs require recruitment, screening, training and supervision.

Related Work

- Generation Challenge 2011 Surface Realization Shared Task (Belz et al., 2011)
- Filippova and Strube (2009) (and their previous paper)'s evaluation is at the clause level instead of full sentences
- Bohnet et al. (2010) relied on discriminative modeling for the selection of the realization
- Guo et al. (2011)'s dependency-based N-gram approach

DELPH-IN 2013, St. Wendel

Extensions

- Does the size of training data matter?
- Are automatic evaluation metrics sufficient?
- Can we apply it to other languages than English?
- Can we break the projectivity assumption?

Additional Training Data

Manual Evaluation

- Comprehensiveness
 - 2 The meaning is the same as the gold standard.
 - 1 The meaning changed slightly from the gold standard, but comprehensible.
 - 0 The meaning is unclear, or totally different from the gold standard.
- Grammaticality
 - 2 The sentence is grammatical and fluent.
 - 1 The sentence is grammatical, but not natural or fluent (including the punctuation errors).
 - 0 The sentence is ungrammatical.

	Comprehensiveness	Grammaticality	Perfect
Base	84.1%	77.1%	28.8%
LM-Rerank	90.1%	73.2%	36.7%

Multilinguality

	Languages	CA	CN	CZ	EN	DE	ES
No.	of CPOS Tag	12	13	12	24	10	12
Avg	. Token / Sent.	31.0	30.0	16.8	25.0	16.0	30.4
Grammar							
Avg.	Config. / Sent.	13.1	14.0	8.3	12.4	6.0	13.2
	Sent	578 / 1724	790 / 1762	498 / 5228	724 / 1334	1512 / 2000	650 / 1655
Coverage	Sent.	(33.5%)	(44.8%)	(9.5%)	(54.3%)	(75.6%)	(39.3%)
Coverage	Config.	22526 / 24546	24749 / 26250	43552 / 49751	16536 / 17369	11925 / 12503	21920 / 23511
		(91.8%)	(94.3%)	(87.5%)	(95.2%)	(95.4%)	(93.2%)
BLEU							
Covered	1-best	84.51	88.67	82.00	91.95	78.52	79.93
Covered	upper bound (1000)	91.77	94.49	93.60	96.20	88.01	89.78
Overall	1-best	75.79	81.48	66.59	84.89	73.85	73.10
Overall	upper bound (1000)	80.61	86.52	76.85	88.75	82.09	79.75
Ulam's dista	ance						
Covered	1-best	0.890	0.946	0.867	0.950	0.857	0.871
	upper bound (1000)	0.949	0.973	0.965	0.978	0.934	0.941
Overall	1-best	0.838	0.891	0.771	0.911	0.829	0.820
Overall	upper bound (1000)	0.875	0.914	0.856	0.934	0.897	0.869

29/7/13

Non-Projective Trees

- Symbols
 - __x: the gap
 - |: the split
- Rules
 - f->a,b => a b _a f
 - a->d => a |2 d
 - d->c => _c | 2 c d _c
 - c->g,e => g |2 c |1 e
- Application
 - g|2cde
 - ga|1cde
 - gabcdef

Evaluation

• Non-projective only

	German		Czech	
	Old	New	Old	New
1-best	59.3	59.0	55.1	56.4
upper bound (1000)	67.8	70.8	63.2	70.1

• Overall

	German		Czech	
	Old	New	Old	New
1-best	72.0	72.1	66.0	66.1
upper bound (1000)	81.0	81.9	77.6	78.8

Conclusion

- Rule-based and treebank-induced
- Generative model: n-best
- Language-independent

Future Work

- Generation from semantic representation, i.e.,
 (D)MRS
- Lexical selection, morphological generation
- Interoperation with deep generation based on DELPH-IN grammars
- Better evaluation methodology
 29/7/13 DELPH-IN 2013, St. Wendel

(see one application scenario in the next presentation)