
Sentence	  Realiza,on	  
with	  Unlexicalized	  Tree	  Lineariza,on	  

Grammars	  

Rui	  Wang	  
(Joint	  work	  with	  Yi	  Zhang)	  
DFKI	  GmbH,	  Germany	  



The	  Task	  
•  Parsing	  
–  (Ordered)	  text	  à	  structure:	  tokenizaGon,	  POS	  tagging,	  
consGtuent/dependency	  parsing,	  …	  

•  GeneraGon	  
–  (Unordered)	  structure	  à	  Text:	  content	  planning,	  lexical	  
choices,	  surface	  realizaGon,	  …	  

•  SyntacGc	  dependency	  tree	  à	  LinearizaGon	  of	  tokens	  
–  GeneraGon	  Challenge	  2011	  Surface	  RealizaGon	  Shared	  
Task	  (Belz	  et	  al.,	  2011)	  
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An	  Example	  

•  every	  dog	  chase	  some	  cat	  

•  	  Every	  dog	  chases	  some	  cat	  .	  
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Outline	  
•  The	  basic	  model	  

•  Problems	  

•  Extensions	  

•  Related/Future	  Work	  

29/7/13	   DELPH-‐IN	  2013,	  St.	  Wendel	   4	  



The	  Basic	  Model	  
•  Unlexicalized	  Tree	  LinearizaGon	  Grammar	  
– A	  set	  of	  linearizaGon	  rules	  
–  Rule:	  (Local)	  configuraGon	  à	  Linear	  order	  
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Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L ! [0,1]s.t.8C 2 C ,
X

8L2L ,LHS(L )=C
Pr(L ) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
Q
L2LD

Pr(L ), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L ) = F req(L )

F req(LHS(L )) .

3 N -Best Tree Linearization

We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ⇤
Y

d2dependents(n)

P(Ld) (3)
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Lineariza,on	  
•  For	  each	  configuraGon	  
– Apply	  the	  linearizaGon	  rule	  

•  For	  each	  subtree	  
–  The	  linearizaGon	  is	  a	  conGnuous	  string	  
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•  Heavy	  selling	  of	  Standard	  &	  Poor	  's	  500	  -‐	  stock	  index	  futures	  in	  
Chicago	  relentlessly	  beat	  stocks	  downward	  .	  

N-‐Best	  Lineariza,on	  

NMOD_ch_J < pa_N < NMOD_ch_I < LOC_ch_I
0.5769231
NMOD_ch_J < pa_N < LOC_ch_I < NMOD_ch_I
0.3846154
NMOD_ch_J < NMOD_ch_I < pa_N < LOC_ch_I
0.03846154

LOC_ch_I
in Chicago
0.9999394
Chicago in
6.0605144E-5

NMOD_ch_I
of Standard & Poor 's 500 - stock index futures
0.9914752
of Standard & Poor 's index 500 - stock futures
0.005435719
of futures Standard & Poor 's index 500 - stock
1.6512935E-5
futures Standard & Poor 's index 500 - stock of
1.0008294E-9

pa_N
selling

NMOD_ch_J
Heavy
1.0
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The	  Probabilis,c	  Model	  
•  For	  each	  LHS	  

•  For	  the	  subtree	  
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where LD is the linearization of the complete sentence with the application of one linearization rule
L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
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2.2 Grammar Extraction

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation:

Pr(L ) = F req(L )
F req(LHS(L )) (4)

3 Tree Linearization

In this section, we start with several baseline models (Section 3.1), followed by the grammar-based
deterministic tree linearization algorithm (Section 3.2). The algorithm is then further extended to
output n-best results using efficient dynamic programming (Section 3.3). In cases of out-of-grammar
configurations, we back off to one of the baseline systems.

3.1 Baselines

Producing a random order of the words is a natural baseline for this task, although it is not a strong
one. We also implement two other baseline models: 1) an N -gram ‘language’ model for each
configuration (N-Gram), and 2) a ranking model that directly sort all the words in each configuration
to their linear order (Rank).

N-Gram

This model can be viewed as a simplified version of (Guo et al., 2011)’s basic model. In-
stead of using grammatical functions derived from lexical functional grammar (LFG), we use
the dependency relation and the parts-of-speech as our syntactic categories. For the exam-
ple in Figure 1, we obtain N -gram counts from sequences hn|sub j, adv|mod, v|hd, n

1

|ob ji and
hn

2

|sub j, v|hd, n
1

|ob j, adv|modi. On top of such instances from all the configurations, we train a
tri-gram model.

Rank

The ranking model is a log-linear model:

Rank(W ) = exp

P
i �i fi(W )P

W2W exp

P
i �i fi(W ) (5)



Assump,ons	  
•  Connected	  

•  Single-‐headed	  

•  ProjecGve	  
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•  Data:	  dependency	  treebanks	  from	  the	  CoNLL-‐shared	  
task	  2009	  (Hajic	  et	  al.,	  2009)	  

•  EvaluaGon	  metrics:	  BLEU	  (Papineni	  et	  al.,	  2002)	  	  

Evalua,on	  

Sentence	  Coverage	   451	  /	  1334	  (33.8%)	  
ConfiguraGon	  Coverage	   15843	  /	  17282	  (91.7%)	  

1-‐best	   92.65	  
Upper	  bound	  (1000)	   96.31	  
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Problems	  
•  Out	  of	  grammar	  
–  Coarse-‐grained	  rules	  
–  Backup	  strategy	  

•  In-‐grammar	  performance	  
– N-‐gram-‐based	  Smoothing	  
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Out	  of	  Grammar	  
•  Coarse-‐grained	  rules	  (POS	  à	  CPOS)	  
•  Backup	  models	  (Pair-‐wised	  ranking)	  
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Models	   POS	   CPOS	  

Coverage	   Sent.	  (1334)	   451	  (33.8%)	   711	  (53.3%)	  

Conf.	  (17282)	   15843	  (91.7%)	   16423	  (95.0%)	  

Covered	   1-‐best	   92.65	   90.64	  

upper	  (1000)	   96.31	   95.31	  

Overall	   1-‐best	   81.63	   83.28	  

upper	  (1000)	   84.08	   87.13	  



Examples	  
•  Gold:	  [“	  The	  market	  is	  overvalued	  ,	  not	  cheap	  ,	  ”	  says]	  Alan	  

Gaines	  of	  the	  New	  York	  money	  -‐	  management	  firm	  Gaines	  
Berland	  .	  

•  System:	  Alan	  Gaines	  of	  the	  New	  York	  money	  -‐	  management	  
firm	  Gaines	  Berland	  [says	  ,	  “	  The	  market	  is	  overvalued	  ,	  not	  
cheap	  .	  ”]	  

•  Gold:	  ...	  than	  many	  taxpayers	  working	  at	  the	  same	  kinds	  of	  
jobs	  and	  [perhaps]	  supporJng	  families	  .	  

•  System:	  ...	  than	  many	  taxpayers	  [perhaps]	  working	  at	  the	  
same	  kinds	  of	  jobs	  and	  supporJng	  families	  .	  	  
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Examples	  (cont.)	  
•  Gold:	  ...	  to	  set	  [aside]	  provisions	  covering	  all	  its	  C$	  1.17	  billion	  

in	  non	  -‐	  Mexican	  LDC	  debt	  .	  
•  System:	  ...	  to	  set	  provisions	  covering	  all	  C$	  its	  1.17	  billion	  in	  

non	  -‐	  Mexican	  LDC	  debt	  [aside]	  .	  

•  Gold:	  Good	  service	  programs	  require	  recruitment	  ,	  screening	  ,	  
training	  and	  supervision	  –	  [all	  of	  high	  quality]	  .	  

•  System:	  [all	  of	  high	  quality]	  –	  Good	  service	  programs	  require	  
recruitment	  ,	  screening	  ,	  training	  and	  supervision	  .	  	  
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Related	  Work	  
•  GeneraGon	  Challenge	  2011	  Surface	  RealizaGon	  Shared	  Task	  

(Belz	  et	  al.,	  2011)	  

•  Filippova	  and	  Strube	  (2009)	  (and	  their	  previous	  paper)’s	  
evaluaGon	  is	  at	  the	  clause	  level	  instead	  of	  full	  sentences	  

•  Bohnet	  et	  al.	  (2010)	  relied	  on	  discriminaGve	  modeling	  for	  the	  
selecGon	  of	  the	  realizaGon	  

•  Guo	  et	  al.	  (2011)’s	  dependency-‐based	  N-‐gram	  approach	  
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Extensions	  
•  Does	  the	  size	  of	  training	  data	  mager?	  

•  Are	  automaGc	  evaluaGon	  metrics	  sufficient?	  

•  Can	  we	  apply	  it	  to	  other	  languages	  than	  English?	  

•  Can	  we	  break	  the	  projecGvity	  assumpGon?	  
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Addi,onal	  Training	  Data	  
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Manual	  Evalua,on	  
•  Comprehensiveness	  

–  2	  The	  meaning	  is	  the	  same	  as	  the	  gold	  standard.	  
–  1	  The	  meaning	  changed	  slightly	  from	  the	  gold	  standard,	  but	  comprehensible.	  
–  0	  The	  meaning	  is	  unclear,	  or	  totally	  different	  from	  the	  gold	  standard.	  

•  GrammaGcality	  
–  2	  The	  sentence	  is	  grammaGcal	  and	  fluent.	  
–  1	  The	  sentence	  is	  grammaGcal,	  but	  not	  natural	  or	  fluent	  (including	  the	  punctuaGon	  

errors).	  
–  0	  The	  sentence	  is	  ungrammaGcal.	  

29/7/13	   DELPH-‐IN	  2013,	  St.	  Wendel	   18	  

Comprehensiveness	   Gramma,cality	   Perfect	  

Base	   84.1%	   77.1%	   28.8%	  

LM-‐Rerank	   90.1%	   73.2%	   36.7%	  



Mul,linguality	  

Sentences
Gold: [“ The market is overvalued , not cheap , ” says] Alan Gaines of the New York money - management firm Gaines Berland .
System: Alan Gaines of the New York money - management firm Gaines Berland [says , “ The market is overvalued , not cheap . ”]
Gold: ... than many taxpayers working at the same kinds of jobs and [perhaps] supporting families .
System: ... than many taxpayers [perhaps] working at the same kinds of jobs and supporting families .
Gold: ... to set [aside] provisions covering all its C$ 1.17 billion in non - Mexican LDC debt .
System: ... to set provisions covering all C$ its 1.17 billion in non - Mexican LDC debt [aside] .
Gold: Good service programs require recruitment , screening , training and supervision – [all of high quality] .
System: [all of high quality] – Good service programs require recruitment , screening , training and supervision .

Table 3: Examples of the system output compared with the gold standard

We list several examples of the system output in Table 3. One major source of errors is the clustering
of punctuations, in particular, commas, as they are not differentiable at the configuration level for the
backoff model Rank. This occurs less with the LM-Rerank model. The free movement of modifiers
(adjectives, adverbs, modifying prepositional phrases, etc.) poses a serious challenge for automatic
evaluation, as in most cases the meaning does not change. However, in the second example in the
table, due to the coordinate structure, the movement of “perhaps” does change the meaning of the
sentence. Furthermore, the context-freeness of the linearization rules do not concern the ‘heaviness’
of the dependent NP, hence (wrongly) preferring the unnatural placement of “aside” to the end of
the sentence in the third example. The last example shows that even when the generated sentence is
perfectly grammatical, the discourse semantics could change drastically.

4.4 Multilinguality

To investigate the multilingual applicability of our approach, we further experiment with five more
languages: Catalan (CA), Chinese (CN), Czech (CZ), German (DE), and Spanish (ES). There is
no language-specific tuning, so this is achieved easily with the availability of the CoNLL 2009
Shared Task datasets. We show some basic statistics of the datasets in Table 4 as well as the
system performance under two automatic measurements: BLEU and Ulam’s distance. The latter
is the minimum number of single item movements of arbitrary length required to transform one
permutation into another (Ulam, 1972), which is the same as the ‘di’ measurement used by Bohnet
et al. (2010) and others.

Languages CA CN CZ EN DE ES
No. of CPOS Tag 12 13 12 24 10 12
Avg. Token / Sent. 31.0 30.0 16.8 25.0 16.0 30.4

Grammar
Avg. Config. / Sent. 13.1 14.0 8.3 12.4 6.0 13.2

Coverage
Sent. 578 / 1724 790 / 1762 498 / 5228 724 / 1334 1512 / 2000 650 / 1655

(33.5%) (44.8%) (9.5%) (54.3%) (75.6%) (39.3%)

Config. 22526 / 24546 24749 / 26250 43552 / 49751 16536 / 17369 11925 / 12503 21920 / 23511
(91.8%) (94.3%) (87.5%) (95.2%) (95.4%) (93.2%)

BLEU

Covered 1-best 84.51 88.67 82.00 91.95 78.52 79.93
upper bound (1000) 91.77 94.49 93.60 96.20 88.01 89.78

Overall 1-best 75.79 81.48 66.59 84.89 73.85 73.10
upper bound (1000) 80.61 86.52 76.85 88.75 82.09 79.75

Ulam’s distance

Covered 1-best 0.890 0.946 0.867 0.950 0.857 0.871
upper bound (1000) 0.949 0.973 0.965 0.978 0.934 0.941

Overall 1-best 0.838 0.891 0.771 0.911 0.829 0.820
upper bound (1000) 0.875 0.914 0.856 0.934 0.897 0.869

Table 4: Performance of the multilingual models
Notice that the best coverage of the grammar is on the German data, which is mainly due to the
short average sentence length (16.0 tokens / sentence) and the flatness of the tree (6.0 configura-
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Non-‐Projec,ve	  Trees	  
•  Symbols	  

–  _x:	  the	  gap	  
–  |:	  the	  split	  

•  Rules	  
–  f-‐>a,b	  =>	  a	  b	  _a	  f	  
–  a-‐>d	  =>	  a	  |2	  d	  
–  d-‐>c	  =>	  _c	  |2	  c	  d	  _c	  
–  c-‐>g,e	  =>	  g	  |2	  c	  |1	  e	  

•  ApplicaGon	  
–  g	  |2	  c	  d	  e	  
–  g	  a	  |1	  c	  d	  e	  
–  g	  a	  b	  c	  d	  e	  f	  
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•  Non-‐projecGve	  only	  

	  
•  Overall	  

Evalua,on	  

German	   Czech	  

Old	   New	   Old	   New	  

1-‐best	   59.3	   59.0	   55.1	   56.4	  

upper	  bound	  (1000)	   67.8	   70.8	   63.2	   70.1	  
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German	   Czech	  

Old	   New	   Old	   New	  

1-‐best	   72.0	   72.1	   66.0	   66.1	  

upper	  bound	  (1000)	   81.0	   81.9	   77.6	   78.8	  



Conclusion	  
•  Rule-‐based	  and	  treebank-‐induced	  

•  GeneraGve	  model:	  n-‐best	  

•  Language-‐independent	  
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Future	  Work	  
•  GeneraGon	  from	  semanGc	  representaGon,	  i.e.,	  
(D)MRS	  

	  
•  Lexical	  selecGon,	  morphological	  generaGon	  

•  InteroperaGon	  with	  deep	  generaGon	  based	  on	  
DELPH-‐IN	  grammars	  

•  Beger	  evaluaGon	  methodology	  
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(see	  one	  applicaGon	  scenario	  in	  the	  next	  
presentaGon)	  
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you_PRP

thank_VB
OBJ

dank_NN

viel_PIAT
NKthank you

Vielen Dank!Thank you!
viel dank


