
Sentence	 Realiza,on	
with	 Unlexicalized	 Tree	 Lineariza,on	

Grammars	

Rui	 Wang	
(Joint	 work	 with	 Yi	 Zhang)	
DFKI	 GmbH,	 Germany	

The	 Task	
•  Parsing	
–  (Ordered)	 text	 à	 structure:	 tokenizaGon,	 POS	 tagging,	
consGtuent/dependency	 parsing,	 …	

•  GeneraGon	
–  (Unordered)	 structure	 à	 Text:	 content	 planning,	 lexical	
choices,	 surface	 realizaGon,	 …	

•  SyntacGc	 dependency	 tree	 à	 LinearizaGon	 of	 tokens	
–  GeneraGon	 Challenge	 2011	 Surface	 RealizaGon	 Shared	
Task	 (Belz	 et	 al.,	 2011)	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 2	

An	 Example	

•  every	 dog	 chase	 some	 cat	

•  	 Every	 dog	 chases	 some	 cat	 .	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 3	

every_DT

dog_NN

chase_VBZ

cat_NN

some_DT

SBJ OBJ

NMOD NMOD

Outline	
•  The	 basic	 model	

•  Problems	

•  Extensions	

•  Related/Future	 Work	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 4	

The	 Basic	 Model	
•  Unlexicalized	 Tree	 LinearizaGon	 Grammar	
– A	 set	 of	 linearizaGon	 rules	
–  Rule:	 (Local)	 configuraGon	 à	 Linear	 order	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 5	

v

n1

ob
j

n2

subj
adv

mod)hn2, adv, v, n1i
)hn2, v, n1, advi

Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L ! [0,1]s.t.8C 2 C ,
X

8L2L ,LHS(L)=C
Pr(L) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
Q
L2LD

Pr(L), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L) = F req(L)

F req(LHS(L)) .

3 N -Best Tree Linearization

We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ⇤
Y

d2dependents(n)

P(Ld) (3)

v

n1

ob
j

n2

subj

adv

mod)hn2, adv, v, n1i
)hn2, v, n1, advi

Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L ! [0,1]s.t.8C 2 C ,
X

8L2L ,LHS(L)=C
Pr(L) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
Q
L2LD

Pr(L), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L) = F req(L)

F req(LHS(L)) .

3 N -Best Tree Linearization

We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ⇤
Y

d2dependents(n)

P(Ld) (3)

Lineariza,on	
•  For	 each	 configuraGon	
– Apply	 the	 linearizaGon	 rule	

•  For	 each	 subtree	
–  The	 linearizaGon	 is	 a	 conGnuous	 string	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 6	

every dog

chase_VBZ

some cat

SBJ OBJ

•  Heavy	 selling	 of	 Standard	 &	 Poor	 's	 500	 -‐	 stock	 index	 futures	 in	
Chicago	 relentlessly	 beat	 stocks	 downward	 .	

N-‐Best	 Lineariza,on	

NMOD_ch_J < pa_N < NMOD_ch_I < LOC_ch_I
0.5769231
NMOD_ch_J < pa_N < LOC_ch_I < NMOD_ch_I
0.3846154
NMOD_ch_J < NMOD_ch_I < pa_N < LOC_ch_I
0.03846154

LOC_ch_I
in Chicago
0.9999394
Chicago in
6.0605144E-5

NMOD_ch_I
of Standard & Poor 's 500 - stock index futures
0.9914752
of Standard & Poor 's index 500 - stock futures
0.005435719
of futures Standard & Poor 's index 500 - stock
1.6512935E-5
futures Standard & Poor 's index 500 - stock of
1.0008294E-9

pa_N
selling

NMOD_ch_J
Heavy
1.0

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 7	

The	 Probabilis,c	 Model	
•  For	 each	 LHS	

•  For	 the	 subtree	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 8	

v

n1

ob
j

n2

subj

adv

mod)hn2, adv, v, n1i
)hn2, v, n1, advi

Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L ! [0,1]s.t.8C 2 C ,
X

8L2L ,LHS(L)=C
Pr(L) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
Q
L2LD

Pr(L), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L) = F req(L)

F req(LHS(L)) .

3 N -Best Tree Linearization

We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ⇤
Y

d2dependents(n)

P(Ld) (3)

v

n1

ob
j

n2

subj

adv

mod)hn2, adv, v, n1i
)hn2, v, n1, advi

Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L ! [0,1]s.t.8C 2 C ,
X

8L2L ,LHS(L)=C
Pr(L) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
Q
L2LD

Pr(L), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L) = F req(L)

F req(LHS(L)) .

3 N -Best Tree Linearization

We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ⇤
Y

d2dependents(n)

P(Ld) (3)

where LD is the linearization of the complete sentence with the application of one linearization rule
L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

2.2 Grammar Extraction

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation:

Pr(L) = F req(L)
F req(LHS(L)) (4)

3 Tree Linearization

In this section, we start with several baseline models (Section 3.1), followed by the grammar-based
deterministic tree linearization algorithm (Section 3.2). The algorithm is then further extended to
output n-best results using efficient dynamic programming (Section 3.3). In cases of out-of-grammar
configurations, we back off to one of the baseline systems.

3.1 Baselines

Producing a random order of the words is a natural baseline for this task, although it is not a strong
one. We also implement two other baseline models: 1) an N -gram ‘language’ model for each
configuration (N-Gram), and 2) a ranking model that directly sort all the words in each configuration
to their linear order (Rank).

N-Gram

This model can be viewed as a simplified version of (Guo et al., 2011)’s basic model. In-
stead of using grammatical functions derived from lexical functional grammar (LFG), we use
the dependency relation and the parts-of-speech as our syntactic categories. For the exam-
ple in Figure 1, we obtain N -gram counts from sequences hn|sub j, adv|mod, v|hd, n

1

|ob ji and
hn

2

|sub j, v|hd, n
1

|ob j, adv|modi. On top of such instances from all the configurations, we train a
tri-gram model.

Rank

The ranking model is a log-linear model:

Rank(W) = exp

P
i �i fi(W)P

W2W exp

P
i �i fi(W) (5)

Assump,ons	
•  Connected	

•  Single-‐headed	

•  ProjecGve	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 9	

•  Data:	 dependency	 treebanks	 from	 the	 CoNLL-‐shared	
task	 2009	 (Hajic	 et	 al.,	 2009)	

•  EvaluaGon	 metrics:	 BLEU	 (Papineni	 et	 al.,	 2002)	 	

Evalua,on	

Sentence	 Coverage	 451	 /	 1334	 (33.8%)	
ConfiguraGon	 Coverage	 15843	 /	 17282	 (91.7%)	

1-‐best	 92.65	
Upper	 bound	 (1000)	 96.31	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 10	

Problems	
•  Out	 of	 grammar	
–  Coarse-‐grained	 rules	
–  Backup	 strategy	

•  In-‐grammar	 performance	
– N-‐gram-‐based	 Smoothing	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 11	

Out	 of	 Grammar	
•  Coarse-‐grained	 rules	 (POS	 à	 CPOS)	
•  Backup	 models	 (Pair-‐wised	 ranking)	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 12	

Models	 POS	 CPOS	

Coverage	 Sent.	 (1334)	 451	 (33.8%)	 711	 (53.3%)	

Conf.	 (17282)	 15843	 (91.7%)	 16423	 (95.0%)	

Covered	 1-‐best	 92.65	 90.64	

upper	 (1000)	 96.31	 95.31	

Overall	 1-‐best	 81.63	 83.28	

upper	 (1000)	 84.08	 87.13	

Examples	
•  Gold:	 [“	 The	 market	 is	 overvalued	 ,	 not	 cheap	 ,	 ”	 says]	 Alan	

Gaines	 of	 the	 New	 York	 money	 -‐	 management	 firm	 Gaines	
Berland	 .	

•  System:	 Alan	 Gaines	 of	 the	 New	 York	 money	 -‐	 management	
firm	 Gaines	 Berland	 [says	 ,	 “	 The	 market	 is	 overvalued	 ,	 not	
cheap	 .	 ”]	

•  Gold:	 ...	 than	 many	 taxpayers	 working	 at	 the	 same	 kinds	 of	
jobs	 and	 [perhaps]	 supporJng	 families	 .	

•  System:	 ...	 than	 many	 taxpayers	 [perhaps]	 working	 at	 the	
same	 kinds	 of	 jobs	 and	 supporJng	 families	 .	 	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 13	

Examples	 (cont.)	
•  Gold:	 ...	 to	 set	 [aside]	 provisions	 covering	 all	 its	 C$	 1.17	 billion	

in	 non	 -‐	 Mexican	 LDC	 debt	 .	
•  System:	 ...	 to	 set	 provisions	 covering	 all	 C$	 its	 1.17	 billion	 in	

non	 -‐	 Mexican	 LDC	 debt	 [aside]	 .	

•  Gold:	 Good	 service	 programs	 require	 recruitment	 ,	 screening	 ,	
training	 and	 supervision	 –	 [all	 of	 high	 quality]	 .	

•  System:	 [all	 of	 high	 quality]	 –	 Good	 service	 programs	 require	
recruitment	 ,	 screening	 ,	 training	 and	 supervision	 .	 	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 14	

Related	 Work	
•  GeneraGon	 Challenge	 2011	 Surface	 RealizaGon	 Shared	 Task	

(Belz	 et	 al.,	 2011)	

•  Filippova	 and	 Strube	 (2009)	 (and	 their	 previous	 paper)’s	
evaluaGon	 is	 at	 the	 clause	 level	 instead	 of	 full	 sentences	

•  Bohnet	 et	 al.	 (2010)	 relied	 on	 discriminaGve	 modeling	 for	 the	
selecGon	 of	 the	 realizaGon	

•  Guo	 et	 al.	 (2011)’s	 dependency-‐based	 N-‐gram	 approach	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 15	

Extensions	
•  Does	 the	 size	 of	 training	 data	 mager?	

•  Are	 automaGc	 evaluaGon	 metrics	 sufficient?	

•  Can	 we	 apply	 it	 to	 other	 languages	 than	 English?	

•  Can	 we	 break	 the	 projecGvity	 assumpGon?	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 16	

Addi,onal	 Training	 Data	

84#

86#

88#

90#

92#

94#

96#

98#

Co
NL
L#

+N
AN
C0
.1M

#

+N
AN
C0
.2M

#

+N
AN
C0
.3M

#

+N
AN
C0
.7M

#

Covered#Oracle#
(1000)#

Covered#1=Best#

Overall#Oracle#
(1000)#

Overall#1=Best#

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 17	

Manual	 Evalua,on	
•  Comprehensiveness	

–  2	 The	 meaning	 is	 the	 same	 as	 the	 gold	 standard.	
–  1	 The	 meaning	 changed	 slightly	 from	 the	 gold	 standard,	 but	 comprehensible.	
–  0	 The	 meaning	 is	 unclear,	 or	 totally	 different	 from	 the	 gold	 standard.	

•  GrammaGcality	
–  2	 The	 sentence	 is	 grammaGcal	 and	 fluent.	
–  1	 The	 sentence	 is	 grammaGcal,	 but	 not	 natural	 or	 fluent	 (including	 the	 punctuaGon	

errors).	
–  0	 The	 sentence	 is	 ungrammaGcal.	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 18	

Comprehensiveness	 Gramma,cality	 Perfect	

Base	 84.1%	 77.1%	 28.8%	

LM-‐Rerank	 90.1%	 73.2%	 36.7%	

Mul,linguality	

Sentences
Gold: [“ The market is overvalued , not cheap , ” says] Alan Gaines of the New York money - management firm Gaines Berland .
System: Alan Gaines of the New York money - management firm Gaines Berland [says , “ The market is overvalued , not cheap . ”]
Gold: ... than many taxpayers working at the same kinds of jobs and [perhaps] supporting families .
System: ... than many taxpayers [perhaps] working at the same kinds of jobs and supporting families .
Gold: ... to set [aside] provisions covering all its C$ 1.17 billion in non - Mexican LDC debt .
System: ... to set provisions covering all C$ its 1.17 billion in non - Mexican LDC debt [aside] .
Gold: Good service programs require recruitment , screening , training and supervision – [all of high quality] .
System: [all of high quality] – Good service programs require recruitment , screening , training and supervision .

Table 3: Examples of the system output compared with the gold standard

We list several examples of the system output in Table 3. One major source of errors is the clustering
of punctuations, in particular, commas, as they are not differentiable at the configuration level for the
backoff model Rank. This occurs less with the LM-Rerank model. The free movement of modifiers
(adjectives, adverbs, modifying prepositional phrases, etc.) poses a serious challenge for automatic
evaluation, as in most cases the meaning does not change. However, in the second example in the
table, due to the coordinate structure, the movement of “perhaps” does change the meaning of the
sentence. Furthermore, the context-freeness of the linearization rules do not concern the ‘heaviness’
of the dependent NP, hence (wrongly) preferring the unnatural placement of “aside” to the end of
the sentence in the third example. The last example shows that even when the generated sentence is
perfectly grammatical, the discourse semantics could change drastically.

4.4 Multilinguality

To investigate the multilingual applicability of our approach, we further experiment with five more
languages: Catalan (CA), Chinese (CN), Czech (CZ), German (DE), and Spanish (ES). There is
no language-specific tuning, so this is achieved easily with the availability of the CoNLL 2009
Shared Task datasets. We show some basic statistics of the datasets in Table 4 as well as the
system performance under two automatic measurements: BLEU and Ulam’s distance. The latter
is the minimum number of single item movements of arbitrary length required to transform one
permutation into another (Ulam, 1972), which is the same as the ‘di’ measurement used by Bohnet
et al. (2010) and others.

Languages CA CN CZ EN DE ES
No. of CPOS Tag 12 13 12 24 10 12
Avg. Token / Sent. 31.0 30.0 16.8 25.0 16.0 30.4

Grammar
Avg. Config. / Sent. 13.1 14.0 8.3 12.4 6.0 13.2

Coverage
Sent. 578 / 1724 790 / 1762 498 / 5228 724 / 1334 1512 / 2000 650 / 1655

(33.5%) (44.8%) (9.5%) (54.3%) (75.6%) (39.3%)

Config. 22526 / 24546 24749 / 26250 43552 / 49751 16536 / 17369 11925 / 12503 21920 / 23511
(91.8%) (94.3%) (87.5%) (95.2%) (95.4%) (93.2%)

BLEU

Covered 1-best 84.51 88.67 82.00 91.95 78.52 79.93
upper bound (1000) 91.77 94.49 93.60 96.20 88.01 89.78

Overall 1-best 75.79 81.48 66.59 84.89 73.85 73.10
upper bound (1000) 80.61 86.52 76.85 88.75 82.09 79.75

Ulam’s distance

Covered 1-best 0.890 0.946 0.867 0.950 0.857 0.871
upper bound (1000) 0.949 0.973 0.965 0.978 0.934 0.941

Overall 1-best 0.838 0.891 0.771 0.911 0.829 0.820
upper bound (1000) 0.875 0.914 0.856 0.934 0.897 0.869

Table 4: Performance of the multilingual models
Notice that the best coverage of the grammar is on the German data, which is mainly due to the
short average sentence length (16.0 tokens / sentence) and the flatness of the tree (6.0 configura-

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 19	

Non-‐Projec,ve	 Trees	
•  Symbols	

–  _x:	 the	 gap	
–  |:	 the	 split	

•  Rules	
–  f-‐>a,b	 =>	 a	 b	 _a	 f	
–  a-‐>d	 =>	 a	 |2	 d	
–  d-‐>c	 =>	 _c	 |2	 c	 d	 _c	
–  c-‐>g,e	 =>	 g	 |2	 c	 |1	 e	

•  ApplicaGon	
–  g	 |2	 c	 d	 e	
–  g	 a	 |1	 c	 d	 e	
–  g	 a	 b	 c	 d	 e	 f	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 20	

a b c d e fg

•  Non-‐projecGve	 only	

	
•  Overall	

Evalua,on	

German	 Czech	

Old	 New	 Old	 New	

1-‐best	 59.3	 59.0	 55.1	 56.4	

upper	 bound	 (1000)	 67.8	 70.8	 63.2	 70.1	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 21	

German	 Czech	

Old	 New	 Old	 New	

1-‐best	 72.0	 72.1	 66.0	 66.1	

upper	 bound	 (1000)	 81.0	 81.9	 77.6	 78.8	

Conclusion	
•  Rule-‐based	 and	 treebank-‐induced	

•  GeneraGve	 model:	 n-‐best	

•  Language-‐independent	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 22	

Future	 Work	
•  GeneraGon	 from	 semanGc	 representaGon,	 i.e.,	
(D)MRS	

	
•  Lexical	 selecGon,	 morphological	 generaGon	

•  InteroperaGon	 with	 deep	 generaGon	 based	 on	
DELPH-‐IN	 grammars	

•  Beger	 evaluaGon	 methodology	
29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 23	

(see	 one	 applicaGon	 scenario	 in	 the	 next	
presentaGon)	

29/7/13	 DELPH-‐IN	 2013,	 St.	 Wendel	 24	

you_PRP

thank_VB
OBJ

dank_NN

viel_PIAT
NKthank you

Vielen Dank!Thank you!
viel dank

