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The	
  Task	
  
•  Parsing	
  
–  (Ordered)	
  text	
  à	
  structure:	
  tokenizaGon,	
  POS	
  tagging,	
  
consGtuent/dependency	
  parsing,	
  …	
  

•  GeneraGon	
  
–  (Unordered)	
  structure	
  à	
  Text:	
  content	
  planning,	
  lexical	
  
choices,	
  surface	
  realizaGon,	
  …	
  

•  SyntacGc	
  dependency	
  tree	
  à	
  LinearizaGon	
  of	
  tokens	
  
–  GeneraGon	
  Challenge	
  2011	
  Surface	
  RealizaGon	
  Shared	
  
Task	
  (Belz	
  et	
  al.,	
  2011)	
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An	
  Example	
  

•  every	
  dog	
  chase	
  some	
  cat	
  

•  	
  Every	
  dog	
  chases	
  some	
  cat	
  .	
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Outline	
  
•  The	
  basic	
  model	
  

•  Problems	
  

•  Extensions	
  

•  Related/Future	
  Work	
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The	
  Basic	
  Model	
  
•  Unlexicalized	
  Tree	
  LinearizaGon	
  Grammar	
  
– A	
  set	
  of	
  linearizaGon	
  rules	
  
–  Rule:	
  (Local)	
  configuraGon	
  à	
  Linear	
  order	
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mod )hn2, adv, v, n1i
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Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L ! [0,1]s.t.8C 2 C ,
X

8L2L ,LHS(L )=C
Pr(L ) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
Q
L2LD

Pr(L ), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L ) = F req(L )

F req(LHS(L )) .

3 N -Best Tree Linearization

We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ⇤
Y

d2dependents(n)

P(Ld) (3)
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Lineariza,on	
  
•  For	
  each	
  configuraGon	
  
– Apply	
  the	
  linearizaGon	
  rule	
  

•  For	
  each	
  subtree	
  
–  The	
  linearizaGon	
  is	
  a	
  conGnuous	
  string	
  

29/7/13	
   DELPH-­‐IN	
  2013,	
  St.	
  Wendel	
   6	
  

every dog

chase_VBZ

some cat

SBJ OBJ



•  Heavy	
  selling	
  of	
  Standard	
  &	
  Poor	
  's	
  500	
  -­‐	
  stock	
  index	
  futures	
  in	
  
Chicago	
  relentlessly	
  beat	
  stocks	
  downward	
  .	
  

N-­‐Best	
  Lineariza,on	
  

NMOD_ch_J < pa_N < NMOD_ch_I < LOC_ch_I
0.5769231
NMOD_ch_J < pa_N < LOC_ch_I < NMOD_ch_I
0.3846154
NMOD_ch_J < NMOD_ch_I < pa_N < LOC_ch_I
0.03846154

LOC_ch_I
in Chicago
0.9999394
Chicago in
6.0605144E-5

NMOD_ch_I
of Standard & Poor 's 500 - stock index futures
0.9914752
of Standard & Poor 's index 500 - stock futures
0.005435719
of futures Standard & Poor 's index 500 - stock
1.6512935E-5
futures Standard & Poor 's index 500 - stock of
1.0008294E-9

pa_N
selling

NMOD_ch_J
Heavy
1.0

29/7/13	
   DELPH-­‐IN	
  2013,	
  St.	
  Wendel	
   7	
  



The	
  Probabilis,c	
  Model	
  
•  For	
  each	
  LHS	
  

•  For	
  the	
  subtree	
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where LD is the linearization of the complete sentence with the application of one linearization rule
L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

2.2 Grammar Extraction

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation:

Pr(L ) = F req(L )
F req(LHS(L )) (4)

3 Tree Linearization

In this section, we start with several baseline models (Section 3.1), followed by the grammar-based
deterministic tree linearization algorithm (Section 3.2). The algorithm is then further extended to
output n-best results using efficient dynamic programming (Section 3.3). In cases of out-of-grammar
configurations, we back off to one of the baseline systems.

3.1 Baselines

Producing a random order of the words is a natural baseline for this task, although it is not a strong
one. We also implement two other baseline models: 1) an N -gram ‘language’ model for each
configuration (N-Gram), and 2) a ranking model that directly sort all the words in each configuration
to their linear order (Rank).

N-Gram

This model can be viewed as a simplified version of (Guo et al., 2011)’s basic model. In-
stead of using grammatical functions derived from lexical functional grammar (LFG), we use
the dependency relation and the parts-of-speech as our syntactic categories. For the exam-
ple in Figure 1, we obtain N -gram counts from sequences hn|sub j, adv|mod, v|hd, n

1

|ob ji and
hn

2

|sub j, v|hd, n
1

|ob j, adv|modi. On top of such instances from all the configurations, we train a
tri-gram model.

Rank

The ranking model is a log-linear model:

Rank(W ) = exp

P
i �i fi(W )P

W2W exp

P
i �i fi(W ) (5)



Assump,ons	
  
•  Connected	
  

•  Single-­‐headed	
  

•  ProjecGve	
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•  Data:	
  dependency	
  treebanks	
  from	
  the	
  CoNLL-­‐shared	
  
task	
  2009	
  (Hajic	
  et	
  al.,	
  2009)	
  

•  EvaluaGon	
  metrics:	
  BLEU	
  (Papineni	
  et	
  al.,	
  2002)	
  	
  

Evalua,on	
  

Sentence	
  Coverage	
   451	
  /	
  1334	
  (33.8%)	
  
ConfiguraGon	
  Coverage	
   15843	
  /	
  17282	
  (91.7%)	
  

1-­‐best	
   92.65	
  
Upper	
  bound	
  (1000)	
   96.31	
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Problems	
  
•  Out	
  of	
  grammar	
  
–  Coarse-­‐grained	
  rules	
  
–  Backup	
  strategy	
  

•  In-­‐grammar	
  performance	
  
– N-­‐gram-­‐based	
  Smoothing	
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Out	
  of	
  Grammar	
  
•  Coarse-­‐grained	
  rules	
  (POS	
  à	
  CPOS)	
  
•  Backup	
  models	
  (Pair-­‐wised	
  ranking)	
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Models	
   POS	
   CPOS	
  

Coverage	
   Sent.	
  (1334)	
   451	
  (33.8%)	
   711	
  (53.3%)	
  

Conf.	
  (17282)	
   15843	
  (91.7%)	
   16423	
  (95.0%)	
  

Covered	
   1-­‐best	
   92.65	
   90.64	
  

upper	
  (1000)	
   96.31	
   95.31	
  

Overall	
   1-­‐best	
   81.63	
   83.28	
  

upper	
  (1000)	
   84.08	
   87.13	
  



Examples	
  
•  Gold:	
  [“	
  The	
  market	
  is	
  overvalued	
  ,	
  not	
  cheap	
  ,	
  ”	
  says]	
  Alan	
  

Gaines	
  of	
  the	
  New	
  York	
  money	
  -­‐	
  management	
  firm	
  Gaines	
  
Berland	
  .	
  

•  System:	
  Alan	
  Gaines	
  of	
  the	
  New	
  York	
  money	
  -­‐	
  management	
  
firm	
  Gaines	
  Berland	
  [says	
  ,	
  “	
  The	
  market	
  is	
  overvalued	
  ,	
  not	
  
cheap	
  .	
  ”]	
  

•  Gold:	
  ...	
  than	
  many	
  taxpayers	
  working	
  at	
  the	
  same	
  kinds	
  of	
  
jobs	
  and	
  [perhaps]	
  supporJng	
  families	
  .	
  

•  System:	
  ...	
  than	
  many	
  taxpayers	
  [perhaps]	
  working	
  at	
  the	
  
same	
  kinds	
  of	
  jobs	
  and	
  supporJng	
  families	
  .	
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Examples	
  (cont.)	
  
•  Gold:	
  ...	
  to	
  set	
  [aside]	
  provisions	
  covering	
  all	
  its	
  C$	
  1.17	
  billion	
  

in	
  non	
  -­‐	
  Mexican	
  LDC	
  debt	
  .	
  
•  System:	
  ...	
  to	
  set	
  provisions	
  covering	
  all	
  C$	
  its	
  1.17	
  billion	
  in	
  

non	
  -­‐	
  Mexican	
  LDC	
  debt	
  [aside]	
  .	
  

•  Gold:	
  Good	
  service	
  programs	
  require	
  recruitment	
  ,	
  screening	
  ,	
  
training	
  and	
  supervision	
  –	
  [all	
  of	
  high	
  quality]	
  .	
  

•  System:	
  [all	
  of	
  high	
  quality]	
  –	
  Good	
  service	
  programs	
  require	
  
recruitment	
  ,	
  screening	
  ,	
  training	
  and	
  supervision	
  .	
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Related	
  Work	
  
•  GeneraGon	
  Challenge	
  2011	
  Surface	
  RealizaGon	
  Shared	
  Task	
  

(Belz	
  et	
  al.,	
  2011)	
  

•  Filippova	
  and	
  Strube	
  (2009)	
  (and	
  their	
  previous	
  paper)’s	
  
evaluaGon	
  is	
  at	
  the	
  clause	
  level	
  instead	
  of	
  full	
  sentences	
  

•  Bohnet	
  et	
  al.	
  (2010)	
  relied	
  on	
  discriminaGve	
  modeling	
  for	
  the	
  
selecGon	
  of	
  the	
  realizaGon	
  

•  Guo	
  et	
  al.	
  (2011)’s	
  dependency-­‐based	
  N-­‐gram	
  approach	
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Extensions	
  
•  Does	
  the	
  size	
  of	
  training	
  data	
  mager?	
  

•  Are	
  automaGc	
  evaluaGon	
  metrics	
  sufficient?	
  

•  Can	
  we	
  apply	
  it	
  to	
  other	
  languages	
  than	
  English?	
  

•  Can	
  we	
  break	
  the	
  projecGvity	
  assumpGon?	
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Addi,onal	
  Training	
  Data	
  

84#

86#

88#

90#

92#

94#

96#

98#

Co
NL
L#

+N
AN
C0
.1M

#

+N
AN
C0
.2M

#

+N
AN
C0
.3M

#

+N
AN
C0
.7M

#

Covered#Oracle#
(1000)#

Covered#1=Best#

Overall#Oracle#
(1000)#

Overall#1=Best#
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Manual	
  Evalua,on	
  
•  Comprehensiveness	
  

–  2	
  The	
  meaning	
  is	
  the	
  same	
  as	
  the	
  gold	
  standard.	
  
–  1	
  The	
  meaning	
  changed	
  slightly	
  from	
  the	
  gold	
  standard,	
  but	
  comprehensible.	
  
–  0	
  The	
  meaning	
  is	
  unclear,	
  or	
  totally	
  different	
  from	
  the	
  gold	
  standard.	
  

•  GrammaGcality	
  
–  2	
  The	
  sentence	
  is	
  grammaGcal	
  and	
  fluent.	
  
–  1	
  The	
  sentence	
  is	
  grammaGcal,	
  but	
  not	
  natural	
  or	
  fluent	
  (including	
  the	
  punctuaGon	
  

errors).	
  
–  0	
  The	
  sentence	
  is	
  ungrammaGcal.	
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Comprehensiveness	
   Gramma,cality	
   Perfect	
  

Base	
   84.1%	
   77.1%	
   28.8%	
  

LM-­‐Rerank	
   90.1%	
   73.2%	
   36.7%	
  



Mul,linguality	
  

Sentences
Gold: [“ The market is overvalued , not cheap , ” says] Alan Gaines of the New York money - management firm Gaines Berland .
System: Alan Gaines of the New York money - management firm Gaines Berland [says , “ The market is overvalued , not cheap . ”]
Gold: ... than many taxpayers working at the same kinds of jobs and [perhaps] supporting families .
System: ... than many taxpayers [perhaps] working at the same kinds of jobs and supporting families .
Gold: ... to set [aside] provisions covering all its C$ 1.17 billion in non - Mexican LDC debt .
System: ... to set provisions covering all C$ its 1.17 billion in non - Mexican LDC debt [aside] .
Gold: Good service programs require recruitment , screening , training and supervision – [all of high quality] .
System: [all of high quality] – Good service programs require recruitment , screening , training and supervision .

Table 3: Examples of the system output compared with the gold standard

We list several examples of the system output in Table 3. One major source of errors is the clustering
of punctuations, in particular, commas, as they are not differentiable at the configuration level for the
backoff model Rank. This occurs less with the LM-Rerank model. The free movement of modifiers
(adjectives, adverbs, modifying prepositional phrases, etc.) poses a serious challenge for automatic
evaluation, as in most cases the meaning does not change. However, in the second example in the
table, due to the coordinate structure, the movement of “perhaps” does change the meaning of the
sentence. Furthermore, the context-freeness of the linearization rules do not concern the ‘heaviness’
of the dependent NP, hence (wrongly) preferring the unnatural placement of “aside” to the end of
the sentence in the third example. The last example shows that even when the generated sentence is
perfectly grammatical, the discourse semantics could change drastically.

4.4 Multilinguality

To investigate the multilingual applicability of our approach, we further experiment with five more
languages: Catalan (CA), Chinese (CN), Czech (CZ), German (DE), and Spanish (ES). There is
no language-specific tuning, so this is achieved easily with the availability of the CoNLL 2009
Shared Task datasets. We show some basic statistics of the datasets in Table 4 as well as the
system performance under two automatic measurements: BLEU and Ulam’s distance. The latter
is the minimum number of single item movements of arbitrary length required to transform one
permutation into another (Ulam, 1972), which is the same as the ‘di’ measurement used by Bohnet
et al. (2010) and others.

Languages CA CN CZ EN DE ES
No. of CPOS Tag 12 13 12 24 10 12
Avg. Token / Sent. 31.0 30.0 16.8 25.0 16.0 30.4

Grammar
Avg. Config. / Sent. 13.1 14.0 8.3 12.4 6.0 13.2

Coverage
Sent. 578 / 1724 790 / 1762 498 / 5228 724 / 1334 1512 / 2000 650 / 1655

(33.5%) (44.8%) (9.5%) (54.3%) (75.6%) (39.3%)

Config. 22526 / 24546 24749 / 26250 43552 / 49751 16536 / 17369 11925 / 12503 21920 / 23511
(91.8%) (94.3%) (87.5%) (95.2%) (95.4%) (93.2%)

BLEU

Covered 1-best 84.51 88.67 82.00 91.95 78.52 79.93
upper bound (1000) 91.77 94.49 93.60 96.20 88.01 89.78

Overall 1-best 75.79 81.48 66.59 84.89 73.85 73.10
upper bound (1000) 80.61 86.52 76.85 88.75 82.09 79.75

Ulam’s distance

Covered 1-best 0.890 0.946 0.867 0.950 0.857 0.871
upper bound (1000) 0.949 0.973 0.965 0.978 0.934 0.941

Overall 1-best 0.838 0.891 0.771 0.911 0.829 0.820
upper bound (1000) 0.875 0.914 0.856 0.934 0.897 0.869

Table 4: Performance of the multilingual models
Notice that the best coverage of the grammar is on the German data, which is mainly due to the
short average sentence length (16.0 tokens / sentence) and the flatness of the tree (6.0 configura-
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Non-­‐Projec,ve	
  Trees	
  
•  Symbols	
  

–  _x:	
  the	
  gap	
  
–  |:	
  the	
  split	
  

•  Rules	
  
–  f-­‐>a,b	
  =>	
  a	
  b	
  _a	
  f	
  
–  a-­‐>d	
  =>	
  a	
  |2	
  d	
  
–  d-­‐>c	
  =>	
  _c	
  |2	
  c	
  d	
  _c	
  
–  c-­‐>g,e	
  =>	
  g	
  |2	
  c	
  |1	
  e	
  

•  ApplicaGon	
  
–  g	
  |2	
  c	
  d	
  e	
  
–  g	
  a	
  |1	
  c	
  d	
  e	
  
–  g	
  a	
  b	
  c	
  d	
  e	
  f	
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•  Non-­‐projecGve	
  only	
  

	
  
•  Overall	
  

Evalua,on	
  

German	
   Czech	
  

Old	
   New	
   Old	
   New	
  

1-­‐best	
   59.3	
   59.0	
   55.1	
   56.4	
  

upper	
  bound	
  (1000)	
   67.8	
   70.8	
   63.2	
   70.1	
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German	
   Czech	
  

Old	
   New	
   Old	
   New	
  

1-­‐best	
   72.0	
   72.1	
   66.0	
   66.1	
  

upper	
  bound	
  (1000)	
   81.0	
   81.9	
   77.6	
   78.8	
  



Conclusion	
  
•  Rule-­‐based	
  and	
  treebank-­‐induced	
  

•  GeneraGve	
  model:	
  n-­‐best	
  

•  Language-­‐independent	
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Future	
  Work	
  
•  GeneraGon	
  from	
  semanGc	
  representaGon,	
  i.e.,	
  
(D)MRS	
  

	
  
•  Lexical	
  selecGon,	
  morphological	
  generaGon	
  

•  InteroperaGon	
  with	
  deep	
  generaGon	
  based	
  on	
  
DELPH-­‐IN	
  grammars	
  

•  Beger	
  evaluaGon	
  methodology	
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(see	
  one	
  applicaGon	
  scenario	
  in	
  the	
  next	
  
presentaGon)	
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you_PRP

thank_VB
OBJ

dank_NN

viel_PIAT
NKthank you

Vielen Dank!Thank you!
viel dank


