
Sentence	
 Realiza,on	

with	
 Unlexicalized	
 Tree	
 Lineariza,on	

Grammars	

Rui	
 Wang	

(Joint	
 work	
 with	
 Yi	
 Zhang)	

DFKI	
 GmbH,	
 Germany	

The	
 Task	

•  Parsing	

–  (Ordered)	
 text	
 à	
 structure:	
 tokenizaGon,	
 POS	
 tagging,	

consGtuent/dependency	
 parsing,	
 …	

•  GeneraGon	

–  (Unordered)	
 structure	
 à	
 Text:	
 content	
 planning,	
 lexical	

choices,	
 surface	
 realizaGon,	
 …	

•  SyntacGc	
 dependency	
 tree	
 à	
 LinearizaGon	
 of	
 tokens	

–  GeneraGon	
 Challenge	
 2011	
 Surface	
 RealizaGon	
 Shared	

Task	
 (Belz	
 et	
 al.,	
 2011)	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 2	

An	
 Example	

•  every	
 dog	
 chase	
 some	
 cat	

•  	
 Every	
 dog	
 chases	
 some	
 cat	
 .	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 3	

every_DT

dog_NN

chase_VBZ

cat_NN

some_DT

SBJ OBJ

NMOD NMOD

Outline	

•  The	
 basic	
 model	

•  Problems	

•  Extensions	

•  Related/Future	
 Work	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 4	

The	
 Basic	
 Model	

•  Unlexicalized	
 Tree	
 LinearizaGon	
 Grammar	

– A	
 set	
 of	
 linearizaGon	
 rules	

–  Rule:	
 (Local)	
 configuraGon	
 à	
 Linear	
 order	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 5	

v

n1

ob
j

n2

subj
adv

mod)hn2, adv, v, n1i
)hn2, v, n1, advi

Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L ! [0,1]s.t.8C 2 C ,
X

8L2L ,LHS(L)=C
Pr(L) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
Q
L2LD

Pr(L), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L) = F req(L)

F req(LHS(L)) .

3 N -Best Tree Linearization

We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ⇤
Y

d2dependents(n)

P(Ld) (3)

v

n1

ob
j

n2

subj

adv

mod)hn2, adv, v, n1i
)hn2, v, n1, advi

Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L ! [0,1]s.t.8C 2 C ,
X

8L2L ,LHS(L)=C
Pr(L) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
Q
L2LD

Pr(L), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L) = F req(L)

F req(LHS(L)) .

3 N -Best Tree Linearization

We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ⇤
Y

d2dependents(n)

P(Ld) (3)

Lineariza,on	

•  For	
 each	
 configuraGon	

– Apply	
 the	
 linearizaGon	
 rule	

•  For	
 each	
 subtree	

–  The	
 linearizaGon	
 is	
 a	
 conGnuous	
 string	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 6	

every dog

chase_VBZ

some cat

SBJ OBJ

•  Heavy	
 selling	
 of	
 Standard	
 &	
 Poor	
 's	
 500	
 -­‐	
 stock	
 index	
 futures	
 in	

Chicago	
 relentlessly	
 beat	
 stocks	
 downward	
 .	

N-­‐Best	
 Lineariza,on	

NMOD_ch_J < pa_N < NMOD_ch_I < LOC_ch_I
0.5769231
NMOD_ch_J < pa_N < LOC_ch_I < NMOD_ch_I
0.3846154
NMOD_ch_J < NMOD_ch_I < pa_N < LOC_ch_I
0.03846154

LOC_ch_I
in Chicago
0.9999394
Chicago in
6.0605144E-5

NMOD_ch_I
of Standard & Poor 's 500 - stock index futures
0.9914752
of Standard & Poor 's index 500 - stock futures
0.005435719
of futures Standard & Poor 's index 500 - stock
1.6512935E-5
futures Standard & Poor 's index 500 - stock of
1.0008294E-9

pa_N
selling

NMOD_ch_J
Heavy
1.0

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 7	

The	
 Probabilis,c	
 Model	

•  For	
 each	
 LHS	

•  For	
 the	
 subtree	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 8	

v

n1

ob
j

n2

subj

adv

mod)hn2, adv, v, n1i
)hn2, v, n1, advi

Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L ! [0,1]s.t.8C 2 C ,
X

8L2L ,LHS(L)=C
Pr(L) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
Q
L2LD

Pr(L), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L) = F req(L)

F req(LHS(L)) .

3 N -Best Tree Linearization

We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ⇤
Y

d2dependents(n)

P(Ld) (3)

v

n1

ob
j

n2

subj

adv

mod)hn2, adv, v, n1i
)hn2, v, n1, advi

Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L ! [0,1]s.t.8C 2 C ,
X

8L2L ,LHS(L)=C
Pr(L) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
Q
L2LD

Pr(L), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L) = F req(L)

F req(LHS(L)) .

3 N -Best Tree Linearization

We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ⇤
Y

d2dependents(n)

P(Ld) (3)

where LD is the linearization of the complete sentence with the application of one linearization rule
L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

2.2 Grammar Extraction

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation:

Pr(L) = F req(L)
F req(LHS(L)) (4)

3 Tree Linearization

In this section, we start with several baseline models (Section 3.1), followed by the grammar-based
deterministic tree linearization algorithm (Section 3.2). The algorithm is then further extended to
output n-best results using efficient dynamic programming (Section 3.3). In cases of out-of-grammar
configurations, we back off to one of the baseline systems.

3.1 Baselines

Producing a random order of the words is a natural baseline for this task, although it is not a strong
one. We also implement two other baseline models: 1) an N -gram ‘language’ model for each
configuration (N-Gram), and 2) a ranking model that directly sort all the words in each configuration
to their linear order (Rank).

N-Gram

This model can be viewed as a simplified version of (Guo et al., 2011)’s basic model. In-
stead of using grammatical functions derived from lexical functional grammar (LFG), we use
the dependency relation and the parts-of-speech as our syntactic categories. For the exam-
ple in Figure 1, we obtain N -gram counts from sequences hn|sub j, adv|mod, v|hd, n

1

|ob ji and
hn

2

|sub j, v|hd, n
1

|ob j, adv|modi. On top of such instances from all the configurations, we train a
tri-gram model.

Rank

The ranking model is a log-linear model:

Rank(W) = exp

P
i �i fi(W)P

W2W exp

P
i �i fi(W) (5)

Assump,ons	

•  Connected	

•  Single-­‐headed	

•  ProjecGve	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 9	

•  Data:	
 dependency	
 treebanks	
 from	
 the	
 CoNLL-­‐shared	

task	
 2009	
 (Hajic	
 et	
 al.,	
 2009)	

•  EvaluaGon	
 metrics:	
 BLEU	
 (Papineni	
 et	
 al.,	
 2002)	
 	

Evalua,on	

Sentence	
 Coverage	
 451	
 /	
 1334	
 (33.8%)	

ConfiguraGon	
 Coverage	
 15843	
 /	
 17282	
 (91.7%)	

1-­‐best	
 92.65	

Upper	
 bound	
 (1000)	
 96.31	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 10	

Problems	

•  Out	
 of	
 grammar	

–  Coarse-­‐grained	
 rules	

–  Backup	
 strategy	

•  In-­‐grammar	
 performance	

– N-­‐gram-­‐based	
 Smoothing	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 11	

Out	
 of	
 Grammar	

•  Coarse-­‐grained	
 rules	
 (POS	
 à	
 CPOS)	

•  Backup	
 models	
 (Pair-­‐wised	
 ranking)	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 12	

Models	
 POS	
 CPOS	

Coverage	
 Sent.	
 (1334)	
 451	
 (33.8%)	
 711	
 (53.3%)	

Conf.	
 (17282)	
 15843	
 (91.7%)	
 16423	
 (95.0%)	

Covered	
 1-­‐best	
 92.65	
 90.64	

upper	
 (1000)	
 96.31	
 95.31	

Overall	
 1-­‐best	
 81.63	
 83.28	

upper	
 (1000)	
 84.08	
 87.13	

Examples	

•  Gold:	
 [“	
 The	
 market	
 is	
 overvalued	
 ,	
 not	
 cheap	
 ,	
 ”	
 says]	
 Alan	

Gaines	
 of	
 the	
 New	
 York	
 money	
 -­‐	
 management	
 firm	
 Gaines	

Berland	
 .	

•  System:	
 Alan	
 Gaines	
 of	
 the	
 New	
 York	
 money	
 -­‐	
 management	

firm	
 Gaines	
 Berland	
 [says	
 ,	
 “	
 The	
 market	
 is	
 overvalued	
 ,	
 not	

cheap	
 .	
 ”]	

•  Gold:	
 ...	
 than	
 many	
 taxpayers	
 working	
 at	
 the	
 same	
 kinds	
 of	

jobs	
 and	
 [perhaps]	
 supporJng	
 families	
 .	

•  System:	
 ...	
 than	
 many	
 taxpayers	
 [perhaps]	
 working	
 at	
 the	

same	
 kinds	
 of	
 jobs	
 and	
 supporJng	
 families	
 .	
 	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 13	

Examples	
 (cont.)	

•  Gold:	
 ...	
 to	
 set	
 [aside]	
 provisions	
 covering	
 all	
 its	
 C$	
 1.17	
 billion	

in	
 non	
 -­‐	
 Mexican	
 LDC	
 debt	
 .	

•  System:	
 ...	
 to	
 set	
 provisions	
 covering	
 all	
 C$	
 its	
 1.17	
 billion	
 in	

non	
 -­‐	
 Mexican	
 LDC	
 debt	
 [aside]	
 .	

•  Gold:	
 Good	
 service	
 programs	
 require	
 recruitment	
 ,	
 screening	
 ,	

training	
 and	
 supervision	
 –	
 [all	
 of	
 high	
 quality]	
 .	

•  System:	
 [all	
 of	
 high	
 quality]	
 –	
 Good	
 service	
 programs	
 require	

recruitment	
 ,	
 screening	
 ,	
 training	
 and	
 supervision	
 .	
 	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 14	

Related	
 Work	

•  GeneraGon	
 Challenge	
 2011	
 Surface	
 RealizaGon	
 Shared	
 Task	

(Belz	
 et	
 al.,	
 2011)	

•  Filippova	
 and	
 Strube	
 (2009)	
 (and	
 their	
 previous	
 paper)’s	

evaluaGon	
 is	
 at	
 the	
 clause	
 level	
 instead	
 of	
 full	
 sentences	

•  Bohnet	
 et	
 al.	
 (2010)	
 relied	
 on	
 discriminaGve	
 modeling	
 for	
 the	

selecGon	
 of	
 the	
 realizaGon	

•  Guo	
 et	
 al.	
 (2011)’s	
 dependency-­‐based	
 N-­‐gram	
 approach	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 15	

Extensions	

•  Does	
 the	
 size	
 of	
 training	
 data	
 mager?	

•  Are	
 automaGc	
 evaluaGon	
 metrics	
 sufficient?	

•  Can	
 we	
 apply	
 it	
 to	
 other	
 languages	
 than	
 English?	

•  Can	
 we	
 break	
 the	
 projecGvity	
 assumpGon?	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 16	

Addi,onal	
 Training	
 Data	

84#

86#

88#

90#

92#

94#

96#

98#

Co
NL
L#

+N
AN
C0
.1M

#

+N
AN
C0
.2M

#

+N
AN
C0
.3M

#

+N
AN
C0
.7M

#

Covered#Oracle#
(1000)#

Covered#1=Best#

Overall#Oracle#
(1000)#

Overall#1=Best#

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 17	

Manual	
 Evalua,on	

•  Comprehensiveness	

–  2	
 The	
 meaning	
 is	
 the	
 same	
 as	
 the	
 gold	
 standard.	

–  1	
 The	
 meaning	
 changed	
 slightly	
 from	
 the	
 gold	
 standard,	
 but	
 comprehensible.	

–  0	
 The	
 meaning	
 is	
 unclear,	
 or	
 totally	
 different	
 from	
 the	
 gold	
 standard.	

•  GrammaGcality	

–  2	
 The	
 sentence	
 is	
 grammaGcal	
 and	
 fluent.	

–  1	
 The	
 sentence	
 is	
 grammaGcal,	
 but	
 not	
 natural	
 or	
 fluent	
 (including	
 the	
 punctuaGon	

errors).	

–  0	
 The	
 sentence	
 is	
 ungrammaGcal.	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 18	

Comprehensiveness	
 Gramma,cality	
 Perfect	

Base	
 84.1%	
 77.1%	
 28.8%	

LM-­‐Rerank	
 90.1%	
 73.2%	
 36.7%	

Mul,linguality	

Sentences
Gold: [“ The market is overvalued , not cheap , ” says] Alan Gaines of the New York money - management firm Gaines Berland .
System: Alan Gaines of the New York money - management firm Gaines Berland [says , “ The market is overvalued , not cheap . ”]
Gold: ... than many taxpayers working at the same kinds of jobs and [perhaps] supporting families .
System: ... than many taxpayers [perhaps] working at the same kinds of jobs and supporting families .
Gold: ... to set [aside] provisions covering all its C$ 1.17 billion in non - Mexican LDC debt .
System: ... to set provisions covering all C$ its 1.17 billion in non - Mexican LDC debt [aside] .
Gold: Good service programs require recruitment , screening , training and supervision – [all of high quality] .
System: [all of high quality] – Good service programs require recruitment , screening , training and supervision .

Table 3: Examples of the system output compared with the gold standard

We list several examples of the system output in Table 3. One major source of errors is the clustering
of punctuations, in particular, commas, as they are not differentiable at the configuration level for the
backoff model Rank. This occurs less with the LM-Rerank model. The free movement of modifiers
(adjectives, adverbs, modifying prepositional phrases, etc.) poses a serious challenge for automatic
evaluation, as in most cases the meaning does not change. However, in the second example in the
table, due to the coordinate structure, the movement of “perhaps” does change the meaning of the
sentence. Furthermore, the context-freeness of the linearization rules do not concern the ‘heaviness’
of the dependent NP, hence (wrongly) preferring the unnatural placement of “aside” to the end of
the sentence in the third example. The last example shows that even when the generated sentence is
perfectly grammatical, the discourse semantics could change drastically.

4.4 Multilinguality

To investigate the multilingual applicability of our approach, we further experiment with five more
languages: Catalan (CA), Chinese (CN), Czech (CZ), German (DE), and Spanish (ES). There is
no language-specific tuning, so this is achieved easily with the availability of the CoNLL 2009
Shared Task datasets. We show some basic statistics of the datasets in Table 4 as well as the
system performance under two automatic measurements: BLEU and Ulam’s distance. The latter
is the minimum number of single item movements of arbitrary length required to transform one
permutation into another (Ulam, 1972), which is the same as the ‘di’ measurement used by Bohnet
et al. (2010) and others.

Languages CA CN CZ EN DE ES
No. of CPOS Tag 12 13 12 24 10 12
Avg. Token / Sent. 31.0 30.0 16.8 25.0 16.0 30.4

Grammar
Avg. Config. / Sent. 13.1 14.0 8.3 12.4 6.0 13.2

Coverage
Sent. 578 / 1724 790 / 1762 498 / 5228 724 / 1334 1512 / 2000 650 / 1655

(33.5%) (44.8%) (9.5%) (54.3%) (75.6%) (39.3%)

Config. 22526 / 24546 24749 / 26250 43552 / 49751 16536 / 17369 11925 / 12503 21920 / 23511
(91.8%) (94.3%) (87.5%) (95.2%) (95.4%) (93.2%)

BLEU

Covered 1-best 84.51 88.67 82.00 91.95 78.52 79.93
upper bound (1000) 91.77 94.49 93.60 96.20 88.01 89.78

Overall 1-best 75.79 81.48 66.59 84.89 73.85 73.10
upper bound (1000) 80.61 86.52 76.85 88.75 82.09 79.75

Ulam’s distance

Covered 1-best 0.890 0.946 0.867 0.950 0.857 0.871
upper bound (1000) 0.949 0.973 0.965 0.978 0.934 0.941

Overall 1-best 0.838 0.891 0.771 0.911 0.829 0.820
upper bound (1000) 0.875 0.914 0.856 0.934 0.897 0.869

Table 4: Performance of the multilingual models
Notice that the best coverage of the grammar is on the German data, which is mainly due to the
short average sentence length (16.0 tokens / sentence) and the flatness of the tree (6.0 configura-

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 19	

Non-­‐Projec,ve	
 Trees	

•  Symbols	

–  _x:	
 the	
 gap	

–  |:	
 the	
 split	

•  Rules	

–  f-­‐>a,b	
 =>	
 a	
 b	
 _a	
 f	

–  a-­‐>d	
 =>	
 a	
 |2	
 d	

–  d-­‐>c	
 =>	
 _c	
 |2	
 c	
 d	
 _c	

–  c-­‐>g,e	
 =>	
 g	
 |2	
 c	
 |1	
 e	

•  ApplicaGon	

–  g	
 |2	
 c	
 d	
 e	

–  g	
 a	
 |1	
 c	
 d	
 e	

–  g	
 a	
 b	
 c	
 d	
 e	
 f	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 20	

a b c d e fg

•  Non-­‐projecGve	
 only	

	

•  Overall	

Evalua,on	

German	
 Czech	

Old	
 New	
 Old	
 New	

1-­‐best	
 59.3	
 59.0	
 55.1	
 56.4	

upper	
 bound	
 (1000)	
 67.8	
 70.8	
 63.2	
 70.1	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 21	

German	
 Czech	

Old	
 New	
 Old	
 New	

1-­‐best	
 72.0	
 72.1	
 66.0	
 66.1	

upper	
 bound	
 (1000)	
 81.0	
 81.9	
 77.6	
 78.8	

Conclusion	

•  Rule-­‐based	
 and	
 treebank-­‐induced	

•  GeneraGve	
 model:	
 n-­‐best	

•  Language-­‐independent	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 22	

Future	
 Work	

•  GeneraGon	
 from	
 semanGc	
 representaGon,	
 i.e.,	

(D)MRS	

	

•  Lexical	
 selecGon,	
 morphological	
 generaGon	

•  InteroperaGon	
 with	
 deep	
 generaGon	
 based	
 on	

DELPH-­‐IN	
 grammars	

•  Beger	
 evaluaGon	
 methodology	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 23	

(see	
 one	
 applicaGon	
 scenario	
 in	
 the	
 next	

presentaGon)	

29/7/13	
 DELPH-­‐IN	
 2013,	
 St.	
 Wendel	
 24	

you_PRP

thank_VB
OBJ

dank_NN

viel_PIAT
NKthank you

Vielen Dank!Thank you!
viel dank

