
Discussion: TDL formalism
potential extensions and new applications

DELPH-IN Summit 2013
Sankt Wendel



Overview

I TDL formalism is our common language, partially defines
what we are and what we do

I Implemented in and interpreted by the processing
systems: LKB, PET, ACE, AGREE, . . .



The DELPH-IN reference formalism

I A trimmed down version of TDL in comparison to e.g.
(Krieger 1995)

I Clean, easy to implement, a good trade-off between
expressiveness and computability

I No value disjunction: encourage generalization in the type
inheritance hierarchy, or duplication/enumeration as
separate instances (DNF)

I Makes certain implicit assumptions of the processing
models





Case Study I: SProUT

I TDL meets finite state techniques
I A grammar consists of pattern/action rules:

I LHS: a regular expression over TFSs with functional
operators and coreferences, representing the recognition
pattern

I RHS: a TFS specification of the output structure
I Small grammars targeting multilingual shallow processing

I Named entity recognition
I Information extraction
I Ontology extraction
I Opinion mining from text



Case Study II: Deependance

I Extends TDL with explicit disjunctions declarations
I Allows distributive/named disjunctions to model

co-variation
I Adds preference distribution over disjunctive terms
I Needs to combine with best-first/non-exhaustive

processing models to work efficiently
I Asserts different processing models (more data-driven and

dependency-oriented)



Questions

I What’s our general attitude towards variants/extensions of
the formalism?

I Deeper integration of stochastic modelling
I Other applications of the TDL


