Intrinsic and extrinsic evaluation of a deep lexical type supertagger

João Silva

Faculty of Sciences, University of Lisbon NLX — Natural Language and Speech Group

10th DELPH-IN Summit Tomar, Portugal July 14–18, 2014

Presentation outline

Introduction and recap

Extrinsic evaluation

Closing remarks

Presentation outline

Introduction and recap

Extrinsic evaluation

Closing remarks

Previously... SVM-TK classifier: The goal

Assign deep lexical types to unknown words

- LX-Gram, an HPSG for Portuguese
 - ► Currently, generics for unknown word handling shallow processing using LX-Suite (POS → default deep type)
- Make use of structured features syntactic constituency, grammatical dependencies, etc.
- Disambiguated lexical types, on-the-fly, off-the-shelf tools

Previously... SVM-TK classifier: The goal

Assign deep lexical types to unknown words

- LX-Gram, an HPSG for Portuguese
 - ► Currently, generics for unknown word handling shallow processing using LX-Suite (POS → default deep type)
- Make use of structured features syntactic constituency, grammatical dependencies, etc.
- Disambiguated lexical types, on-the-fly, off-the-shelf tools

The approach

- Support-vector machine (SVM) classifier
- ▶ Tree kernels (TK) to allow using structured features

Previously...

SVM-TK classifier: The central idea

shallow processing

grammar

Previously...

SVM-TK classifier: The central idea

The classifier

Is placed between the shallow processing and the grammar

Previously...

SVM-TK classifier: The central idea

The classifier

- Is placed between the shallow processing and the grammar
- Combines shallow information and picks a single lexical type

Previously. . .

SVM-TK classifier: Evaluation

- Intrinsic evaluation
 - Top-n most frequent verb types
 - Comparison with other approaches (viz. SVMTool: state-of-the-art supertagger)
 - ► Running over gold dependencies vs. predicted dependencies
 - Varying the size of the training dataset
 - Changing the grammar and language (ERG for English)

Previously. . .

SVM-TK classifier: Evaluation

- Intrinsic evaluation
 - Top-n most frequent verb types
 - Comparison with other approaches (viz. SVMTool: state-of-the-art supertagger)
 - Running over gold dependencies vs. predicted dependencies
 - Varying the size of the training dataset
 - Changing the grammar and language (ERG for English)

	SVM-TK	SVMTool	
top-10	94.76	94.20	
top-20	90.27	92.49	
top-30	89.04	92.48	

LX-Gram / CINTIL

Previously. . .

SVM-TK classifier: Evaluation

- Intrinsic evaluation
 - Top-n most frequent verb types
 - Comparison with other approaches (viz. SVMTool: state-of-the-art supertagger)
 - Running over gold dependencies vs. predicted dependencies
 - Varying the size of the training dataset
 - Changing the grammar and language (ERG for English)

	SVM-TK	SVMTool		SVM-TK	SVMTool
top-10	94.76	94.20	top-19	93.05	91.53
top-20	90.27	92.49	top-41	91.63	89.63
top-30	89.04	92.48	top-56	90.93	88.80
LX-Gram / CINTIL		ERG / Redwoods			

Presentation outline

Introduction and recap

Extrinsic evaluation

Closing remarks

Overview

So, SVM-TK is the best supertagger and everyone is happy. But what happens when LX-Gram is run with and without it?

Overview

So, SVM-TK is the best supertagger and everyone is happy. But what happens when LX-Gram is run with and without it?

The experiment

- ▶ 5,000 previously unseen sentences
- ► SVM-TK for top-10 verbs, over predicted dependencies
- Manual treebanking, with and without SVM-TK (many thanks to our annotators for their help)

Coverage results

Without/with SVM-TK, the 4 cases:

- case [--], failure in both situations;
- case [-+],
 becomes parsable;
- case [+-], becomes unparsable;
- and case [++],
 no parsability change.

Coverage results

Without/with SVM-TK, the 4 cases:

- case [--], failure in both situations;
- case [-+],
 becomes parsable;
- case [+-], becomes unparsable;
- and case [++],
 no parsability change.

case	sent.		
[]	3474		
[-+]	10		
[+-]	37		
[++]	1479		
total	5000		

Correctness results

Presentation outline

Introduction and recap

Extrinsic evaluation

Closing remarks

Comments on the extrinsic experiment

Improvements in coverage and correctness

- ▶ 10 parses gained, with 1 accepted
- ▶ 37 parses dropped, but none was acceptable
- ▶ Lost 2 accepted parses, gained 5 (+3 net)

Comments on the extrinsic experiment

Improvements in coverage and correctness

- ▶ 10 parses gained, with 1 accepted
- 37 parses dropped, but none was acceptable
- ▶ Lost 2 accepted parses, gained 5 (+3 net)

Not as good as I wanted/expected

- Top-10 most frequent types
- SVM-TK often assigns the default
- There are issues apart of OOV words
- Etc.

What is the problem?

Assign deep lexical types to OOV words.

- What is the problem? Assign deep lexical types to OOV words.
- What is the main insight? Structured features are bound to help, and we can get them from robust methods.

- What is the problem? Assign deep lexical types to OOV words.
- What is the main insight? Structured features are bound to help, and we can get them from robust methods.
- What is new?

A classifier that combines multiple shallow processes, with tree kernels to allow capturing structured features.

- What is the problem? Assign deep lexical types to OOV words.
- What is the main insight? Structured features are bound to help, and we can get them from robust methods.
- What is new?

A classifier that combines multiple shallow processes, with tree kernels to allow capturing structured features.

 What were the results? Improves on the state-of-the-art supertagging methods.
 A general harness to experiment with various shallow methods.

Thank you, and congratulations to DELPH-IN!