Simple Negation Scope Resolution through Deep Parsing

Woodley Packard, Emily Bender, Jonathon Read, Stephan Oepen and Bec Dridan Tomar DELPH-IN Summit 16 July 2014

Negation: Who cares?

MT example:

- Japanese: 偏見は持つべきではない。
- Human: We shouldn't have any prejudice.
- Moses: You should have a bias.
- Moses loses negation 2/3 of the time!

(Bond, 2012)

Negation: Who cares?

IE Example

• Gmail automatically detects event invitations in your inbox:

meet	ing Inbox x		
•	Woodley Packard to me 🖃		3:34 PM (0 m
	Actually, let's not have a meetin	g next Thursday. What other tim	nes are you free?
		Pencil it in	×
*	Click here to Reply or Forward	When you see a time or date you can click on it to add an e Calendar.	with a dotted underline, event to your Google
		Try it now	Go to Google Calendar »

{The German} was sent for but professed to {know} (**nothing**) {of the matter}.

It may be that {you are} <**not>** {yourself luminous}, but you are a conductor of light.

"I trust that {there is} (nothing) {of consequence which I have overlooked}?"

• Step 4: Project activated EPs to surface strings.

The German was sent for but professed to know nothing of the matter.

- In this example, we are done!
- Some sentences contain **semantically empty words**, i.e. function words that act as syntactic glue but do not correspond to any EP in the MRS:

"I trust that {there is} <no>{thing of consequence which I have overlooked}?"

• For these, have to work slightly harder — resort to the parse tree.

Experimental Setup

- *SEM Shared Task corpora: Sherlock Holmes stories
- Designated train/dev/test split
- Gold cues
- MRS crawling rules designed mostly by examination of and error analysis on the *training* data (several cycles)
 - one round of error analysis on the *dev* data
- MRS crawling system applied to 1-best analysis from ERG

Results

Dev	Р	R	F1	Test	Р	R	F1
Scopes	100	53	69.3	Scopes	100	44.2	61.3
Tokens	89.3	67.0	76.6	Tokens	85.8	68.4	76.1

- High precision: the rules are doing the right thing
- Low recall: sometimes there's no parse, or the 1-best parse is incorrect, or it involves a rare cue that the rules don't know about, or...
- Idea: system combination with a higher recall, lower precision system

System Combination

- Use MRS crawler when results available
- Otherwise fall back to Read et al. (2012)

Dev	Р	R	F1	Test	Ρ	R	F1
Scopes	100	64.9	78.7	Scopes	98.6	56.6	71.9
Tokens	89.0	83.5	86.1	Tokens	83.8	88.4	86.1

- Much, much better but not consistently better than Read et al. (2012) yet.
- Haven't addressed parse selection failure.
 - \rightarrow confidence metric

System Combination (2)

- Use MRS crawler when results available and confidence > 0.5
- Fall back to Read et al. (2012) otherwise

Combined

Dev	Р	R	F1	Test	Ρ	R	F1
Scopes	100	70.2	82.5	Scopes	98.8	65.5	78.7
Tokens	86.4	86.8	86.6	Tokens	86.1	90.4	88.2

Read et al. (2012)

Dev	Р	R	F1	Test	Р	R	F1
Scopes	100	68.5	81.3	Scopes	98.8	64.3	77.9
Tokens	84.8	86.8	85.8	Tokens	85.3	90.7	87.9

Conclusion

- MRS-based system is high-precision but low-recall
- In system combination, outperforms best published results
- Our crawling rules were implemented independently of the guidelines, but nonetheless model them quite closely
 - Convergence lends credence to both the annotations and the MRS structures
 - Underscores the value of explicit semantic representations for tasks related to extracting meaning
- Thank you!

References

- Basile, V., Bos, J., Evang, K., & Venhuizen, N. (2012). UGroningen. Negation detection with Discourse Representation Structures. In Proceedings of the 1st Joint Conference on Lexical and Computational Semantics (p. 301– 309). Montréal, Canada.
- Bond, F. (2012). NTU, NTT site reports. Presented at 2012 DELPH-IN Summit, Sofia Bulgaria. Retrieved from http://www.delph-in.net/2012/ntu.pdf
- Copestake, A., Flickinger, D., Pollard, C., & Sag, I. A. (2005). Minimal Recursion Semantics. An introduction. *Research on Language and Computation*, 3(4), 281–332.
- Flickinger, D. (2000). On building a more efficient grammar by exploiting types. Natural Language Engineering, 6 (1), 15–28.
- Flickinger, D. (2011). Accuracy v. robustness in grammar engineering. In E. M. Bender & J. E. Arnold (Eds.), Language from a cognitive perspective: Grammar, usage and processing (pp. 31–50). Stanford, CA: CSLI Publications.

References

- Morante, R., & Blanco, E. (2012). *SEM 2012 shared task: Resolving the scope and focus of negation. In *Proceedings of the 1st Joint Conference on Lexical and Computational Semantics* (p. 265–274). Montréal, Canada. Morante, R., & Daelemans, W. (2012). ConanDoyle-neg. Annotation of negation
 - in Conan Doyle stories. In *Proceedings of the 8th International Conference* on Language Resources and Evaluation. Istanbul, Turkey.
- Read, J., Velldal, E., Øvrelid, L., & Oepen, S. (2012). UiO1: constituent-based discriminative ranking for negation resolution. In *Proceedings of the 1st Joint Conference on Lexical and Computational Semantics* (p. 310-318). Montréal, Canada.
- Vincze, V., Szarvas, G., Farkas, R., Mra, G., & Csirik, J. (2008). The BioScope corpus: Biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinformatics, 9(Suppl 11).
- White, J. P. (2012). UWashington: Negation resolution using machine learning methods. In *Proceedings of the 1st Joint Conference on Lexical and Computational Semantics* (p. 335-339). Montréal, Canada.