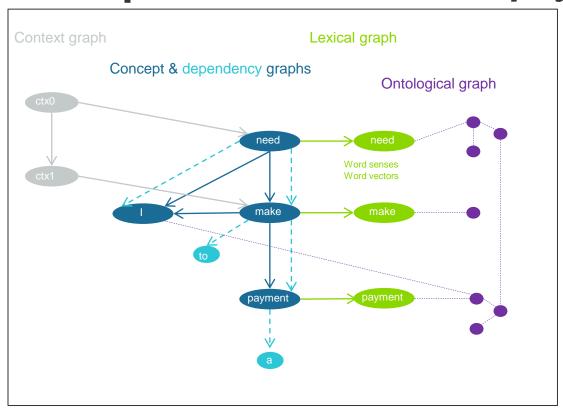
Graphical AKR

- AKR (Abstract Knowledge Representation)
 - Developed at PARC
 - Sharp separation of conceptual, contextual, and other structures
- Graphical AKR
 - Socialize AKR with computer scientists
 - Comprises conceptual, contextual, and other graphs
 - Separate but linked and interacting graphs
 - Readily extendible to incorporate other sub-graphs of information
 - E.g. task models, frames, dialog states
 - Easy to ignore certain levels of information
- Grand vision
 - A semantic representation that bridges natural language inference and formal knowledge-based reasoning

Example: I need to make a payment



Concept Graph

- Predicate-argument structure
 Context Graph
- Scope & modality

Lexical Graph

- Word senses/vectors
- **Property Graph**
- Determiners, tense

Link Graph

Coreference

Basic Graph Semantics

Concept graph is a description logic restriction structure

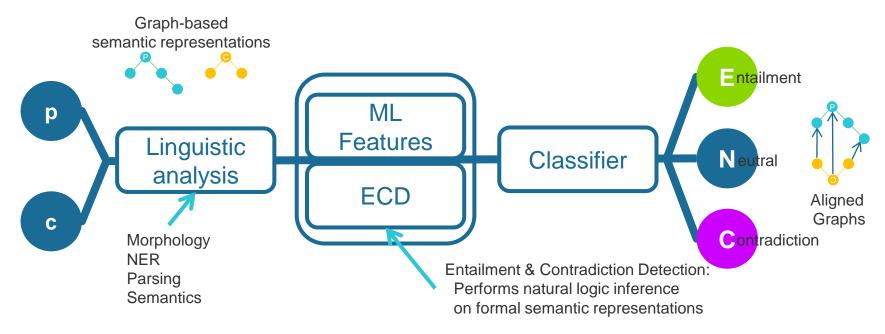
- Graph carries no existential commitment
- Nodes denote concepts (not individuals)
- Arcs represent concept restrictions
- Property graph arcs (to determiners, tense) represent further restrictions

Context graph

- Imposes existential commitment by saying whether head concepts are instantiable
- Context structure induced by
 - Connectives (not, or, if)
 - Mood & modals
 - Clausal complements
 - Distributivity (aka quantifier scope)

Approach to NL Inference

- Uses deep linguistic structures
- Output is weighted classification plus structure alignment



Natural Logic Inference for ECD

- Determine specificity relations between words
 - then phrases
 - then sentences
- More specific implies less specific

more specific than

~ incompatible

Sentences

Words

plane ⊏ vehicle man ⊏ person no ~ a

Phrases

flew a plane

flew a vehicle

jet plane

plane

every person

every man

no man

a man

A man flew a plane

— A man flew a vehicle

Every person flew a plane

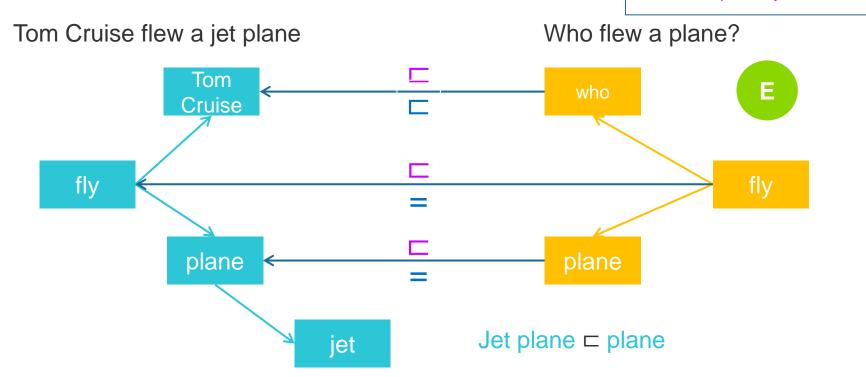
— Every man flew a plane

No man flew a plane

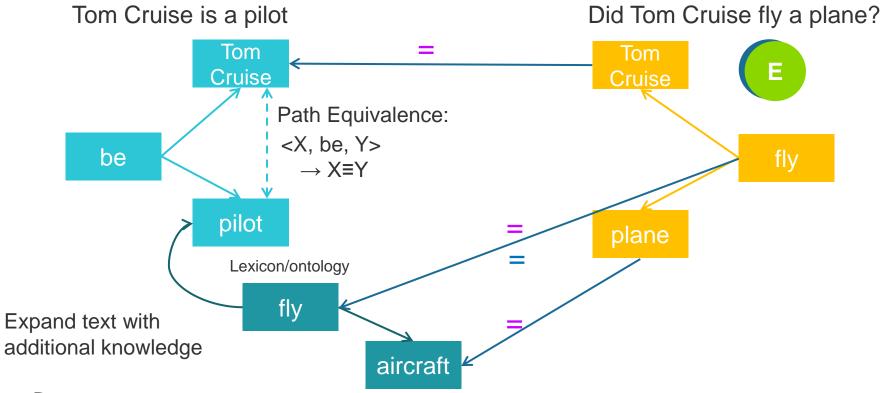
~ A man flew a plane

ECD Processing (for QA)

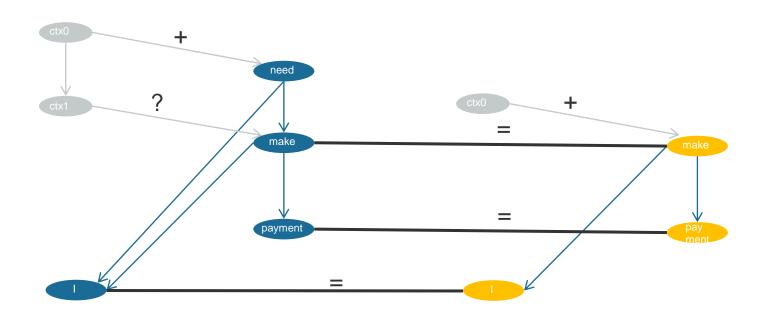
- Construct semantic graphs
- Initial term matches
- Revise specificity relations



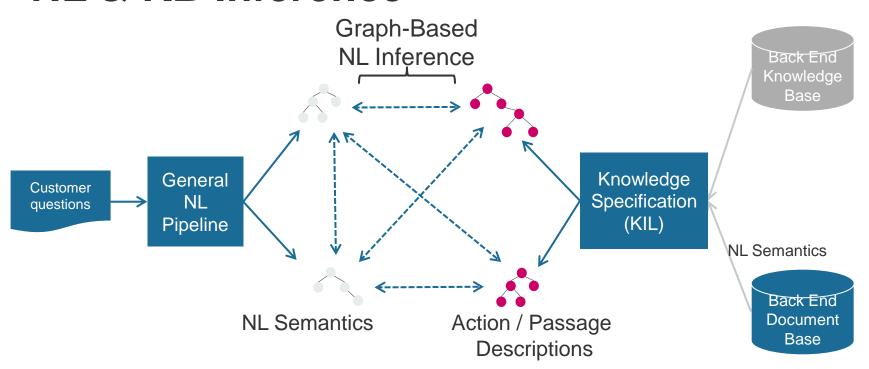
Adding more Knowledge



Contexts, Polarity, Instantiability

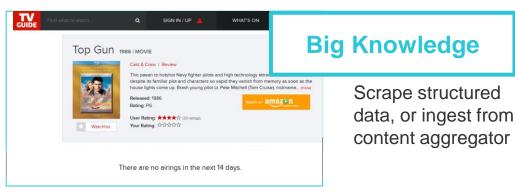


NL & KB Inference



Mixing Canonical and Non-Canonical Data

Is anywhere showing that movie where Tom Cruise flies a plane?



Language ≠ Unstructured Data

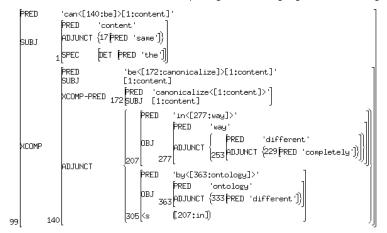
Two Dimensions of Structure

	Formal	Canonical
Ontology	Yes	Yes
NL	Yes	No

- Formal
 - Has a defined, computer readable notation
- Canonical
 - Unique representation for each content

Language as formal structure

"The same content can be canonicalized in completely different ways by different ontologies.



Latest RTE Bake-Off: SemEval 2014

Recognizing Textual Entailment

Topic of active academic research & bake-offs since 2004

Team	Accuracy
1. Illinois	84.5
2= Nuance NLIE	82.6*
6. Meaning Factory	81.6
9. Nuance ECD	78.9*
14. Stanford NLP	74.5

First attempt

Achieved without acquisition of paraphrase relations or extensive world knowledge

*Nuance did not participate

Big Knowledge Inference

Finding answers in the Big Knowledge Repository

- Question is mapped into a SPARQL query
 - SPARQL: "SQL for triple stores"
 - First-order inference useful for mapping toSPARQL
- Triples retrieved from BKR
 - BKR accesses back-end databases, determined by semantic routing
- Term bindings returned to FOL inference

```
Inference
?X = bkr: F14
                           SPARQL
WHERE {
 bkr:TomCruise bkr:fly ?X .
 ?X isa bkr:Aircraft .
                             BKR
<bkr:TomCruise</pre>
 bkr:flv
 bkr: F14>
                    Back-end provider data
```


FOL/Cyc

Problem

Getting NL and big knowledge to talk to each other

- Inference and processing mechanisms can be very different
- Must share output representations
 - Use shared representations to interleave NL and BK inference
- Can structured output from NL inference be shared with BK?
 - Difficult if NLI output is a weighted classification of sentence pairs.

Solution: Term Bindings

 Although NLI and BKR inference is different, results are represented uniformly as term bindings

- SPARQL queries to knowledge repository return term bindings
 - ?X = bkr:TomCruise
- Term matches between premise and conclusion in NLI are term bindings
 - Who_c = TomCruise_p

Discovering and refining intents

Discovery

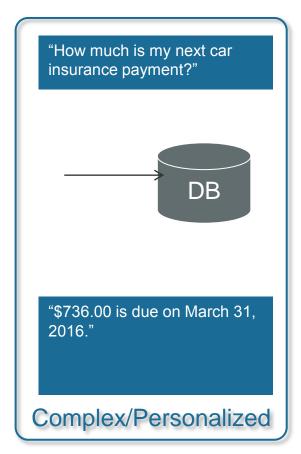
- Start with automatic acquisition of intents from logs
 - Likely to be of lower quality than hand constructed intents

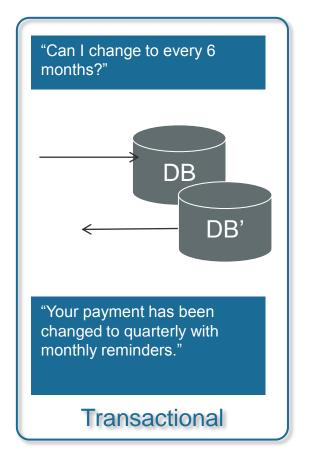
Refinement

- Use HAVA to refine initial intent definitions
 - Allows quick deployment with incomplete / poor intents
 - Combination of human assisted learning and manual review increases scope of VA over time
 - Possibility of using HAVA behind completely empty VAs
 - 1. Evaluate against existing domain.
 - 2. Move to new domains.

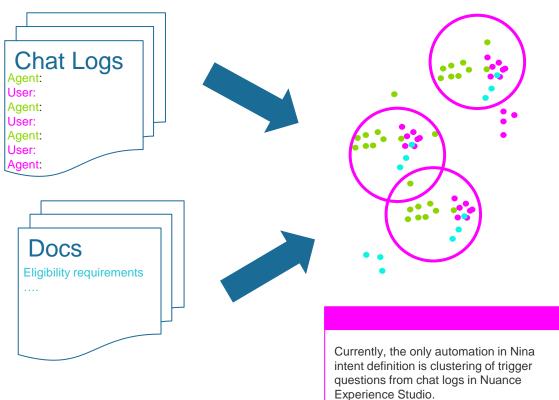
Intent classification

"Can I get a car insurance quote?" Customer documents / Chat logs "You can start the auto insurance quote process General/Class-based





NiK Clustering: General & Class-based



NiK/NLI:

Joint clustering of questions, answers, passages

Standard NES string similarity

Search relevance / similarity Natural language inference Graph similarity DNN/Seq2Seq

Clustering approaches

Nina Knowledge clustering

