
Python DMRS library: pydmrs

Guy Emerson Alexander Kuhnle

Computer Laboratory
University of Cambridge

DELPH-IN Summit, 2016



GraphLang
A DMRS graph description language

proper q --> named(Kim) <-1- eat v 1 -2-> cake n 1 <-- udef q

Motivation:

I Succinct and easily read-/writeable representation for DMRS

I DMRS formalism similar to MRS formalisms like Oepen et al.
(2004)

I Useful if one wants to quickly specify a DMRS graph, e.g. for
debugging



GraphLang
A DMRS graph description language

proper q --> named(Kim) <-1- eat v 1 -2-> cake n 1 <-- udef q

Motivation:

I Succinct and easily read-/writeable representation for DMRS

I DMRS formalism similar to MRS formalisms like Oepen et al.
(2004)

I Useful if one wants to quickly specify a DMRS graph, e.g. for
debugging



GraphLang
A DMRS graph description language

proper q --> subj:named(Kim) x[3s + ] <-1- like v 1 e[ppi--];

: like v 1 -2h-> eat v 1 e[pui--] -2-> cake n 1 x[3s ] <-- udef q;

: eat v 1 -1-> :subj

Features:

I Sortinfo syntax (short form): e[pui--], textttx[3s ]

I Node identifier via colon prefix: subj:named

I Referring back to nodes via leading colon: : like v 1,
:subj



Matching & mapping
Search

node <-1- eat v 1 e? -2-> ?obj n 1 x?

Features:

I Underspecification of nodes or parts of their properties

I Identifier suffix for querying

Query tool:

> python3 dmrs.py "Kim likes to eat cake."

| python3 query.py "node <-1- eat v 1 e? -2-> ?obj n 1 x?"

{’obj’: ’cake’}



Matching & mapping
Search

node <-1- eat v 1 e? -2-> ?obj n 1 x?

Features:

I Underspecification of nodes or parts of their properties

I Identifier suffix for querying

Query tool:

> python3 dmrs.py "Kim likes to eat cake."

| python3 query.py "node <-1- eat v 1 e? -2-> ?obj n 1 x?"

{’obj’: ’cake’}



Matching & mapping
Replace

[1]: like v 1 e? -2h-> eat v 1 e? -2-> [2]: ? n ? x?

⇒
[1]: eat v 1 e? -2-> [2]: ? n ? x?

Features:

I Node identifier (with square brackets) for mapping alignment

Paraphrase tool:

> python3 paraphrase.py paraphrases.txt "Kim likes to eat cake."

Kim eats cake.



Matching & mapping
Replace

[1]: like v 1 e? -2h-> eat v 1 e? -2-> [2]: ? n ? x?

⇒
[1]: eat v 1 e? -2-> [2]: ? n ? x?

Features:

I Node identifier (with square brackets) for mapping alignment

Paraphrase tool:

> python3 paraphrase.py paraphrases.txt "Kim likes to eat cake."

Kim eats cake.



More specialised concepts

Optional node: “at (long) last” → “finally”

Search: [1]: at p e[pui--] -2-> last n 1 x[3s + ] <-- idiom q i;

(2): long a 1 e[pui ] =1=> : last n 1

Replace: [1]: final a 1 e[pui--]

Subgraph node: “Kim eats apple cake.” → “What does Kim eat?”

Search: *[1]: v e[p????] -2-> {2}:node
Replace: *[1]: v e[q????] -2-> [2]:thing x <-- which q

Equality constraint: “I think I will go.” → “I am thinking of going.”

Search: [1]:node=1 <-1- [2]: think v 1 e[????-] -2h-> [3]: v e[pfi--];

:3 -1-> node=1

Replace: [1]:node <-1- [2]: think v of e[????+] -2-> nominalization x;

udef q --> :nominalization =1h=> [3]: v e[pui-+]



More specialised concepts

Optional node: “at (long) last” → “finally”

Search: [1]: at p e[pui--] -2-> last n 1 x[3s + ] <-- idiom q i;

(2): long a 1 e[pui ] =1=> : last n 1

Replace: [1]: final a 1 e[pui--]

Subgraph node: “Kim eats apple cake.” → “What does Kim eat?”

Search: *[1]: v e[p????] -2-> {2}:node
Replace: *[1]: v e[q????] -2-> [2]:thing x <-- which q

Equality constraint: “I think I will go.” → “I am thinking of going.”

Search: [1]:node=1 <-1- [2]: think v 1 e[????-] -2h-> [3]: v e[pfi--];

:3 -1-> node=1

Replace: [1]:node <-1- [2]: think v of e[????+] -2-> nominalization x;

udef q --> :nominalization =1h=> [3]: v e[pui-+]



More specialised concepts

Optional node: “at (long) last” → “finally”

Search: [1]: at p e[pui--] -2-> last n 1 x[3s + ] <-- idiom q i;

(2): long a 1 e[pui ] =1=> : last n 1

Replace: [1]: final a 1 e[pui--]

Subgraph node: “Kim eats apple cake.” → “What does Kim eat?”

Search: *[1]: v e[p????] -2-> {2}:node
Replace: *[1]: v e[q????] -2-> [2]:thing x <-- which q

Equality constraint: “I think I will go.” → “I am thinking of going.”

Search: [1]:node=1 <-1- [2]: think v 1 e[????-] -2h-> [3]: v e[pfi--];

:3 -1-> node=1

Replace: [1]:node <-1- [2]: think v of e[????+] -2-> nominalization x;

udef q --> :nominalization =1h=> [3]: v e[pui-+]



Applications

I Robust text query, e.g. for ontology extraction from
WikiWoods

I Paraphrasing (examples in pydmrs)

I Sentence simplification/normalisation

I Machine translation, similar to the MRS transfer formalism of
e.g. Bond et al. (2011) or Oepen et al. (2004)

I Mapping between graph formalisms or to/from simplified
“DMRS graphs”, e.g. Guy’s robot language

I Other ideas?


