
Scope is useful!
Designing SQL queries using generalized quantifiers

Woodley Packard
DELPH-IN 2016

Friday, June 17, 16

MRS — Scope?

• Labels, QEQ's, /EQ's, /H's, /NEQ's… they
just get in the way, right?

• First thing most people do with an MRS is
do their best to pretend it doesn't actually
represent a logical form

Friday, June 17, 16

Quick Review

Diagrams from Copestake et al. 2005

MINIMAL RECURSION SEMANTICS: AN INTRODUCTION 291

to represent this as a single MRS structure, we can do so by representing
the pieces of the tree that are constant between the two readings, and stip-
ulating some constraints on how they may be joined together. The basic
conditions on joining the pieces arise from the object language: (1) there
must be no cases where an argument is left unsatisfied and (2) an ep may
fill at most one argument position. Given these conditions, we can gener-
alize over these two structures, as shown in (18):

(18) h1: every(x, h3, h8), h3: dog(x), h7: white(y), h7: cat(y),
h5: some(y, h7, h9), h4 : chase(x, y)

In this example, we have h8 and h9 as the handles in the body positions
of the quantifiers. Following Bos (1995), we will sometimes use the term
hole to refer to handles which correspond to an argument position in an
elementary predication, in contrast to labels.

In terms of the tree representation, what we have done is to replace the
fully specified trees with a partially specified structure. Linking the pieces
of the representation can be done in just two ways, to give exactly these
two trees back again, provided the restrictions on valid predicate calcu-
lus formulas are obeyed. That is, we can either link the structures so that
h8 = h5 and h9 = h4, which gives the reading where every outscopes some
(as in (17)), or link them so that h8=h4 and h9=h1, which gives the read-
ing where some outscopes every (as in (16)). But we couldn’t make h8 =
h9=h4, for instance, because the result would not be a tree. We will make
the linking constraints explicit in the next section. It will turn out that
for more complex examples we also need to allow the grammar to specify
some explicit partial constraints on linkages, which again we will consider
below.

So each analysis of a sentence produced by a grammar corresponds to
a single MRS structure, which in turn corresponds to a (non-empty) set
of expressions in the predicate calculus object language. If the set contains
more than one element, then we say that the MRS is underspecified (with
respect to the object language).6

So, to summarize this section, there are two basic representational fea-
tures of MRS. The most important is that we reify scopal relationships as
handles so that syntactically the language looks first-order. This makes it
easy to ignore scopal relations when necessary, and by allowing the handles
to act as variables, we can represent underspecification of scope. The second
feature is to recognize the special status of logical conjunction and to adapt
the syntax so it is not explicit in the MRS. This is less important in terms
of formal semantics and we could have adopted the first feature, but kept an
explicit conjunction relation. However implicit conjunction combined with
scope reification considerably facilitates generation and transfer using MRS
(see Copestake et al., 1995; Carroll et al., 1999).

Every dog chases some white cat.

Friday, June 17, 16

Quick Review

Diagrams from Copestake et al. 2005

290 ANN COPESTAKE ET AL.

These flat labeled structures are MRSs, but the reason why MRS is not
a notational variant of the conventional representation is that it allows un-
derspecification of the links in order to represent multiple scopes (rather
than requiring that each handle in an argument position also be the label
of some ep). We use the term handle for the tags in both fully specified and
underspecified links.

To illustrate scope underspecification informally, consider the represen-
tation of the sentence in (15):

(15) Every dog chases some white cat.

This has the fully specified readings shown in (16) (wide scope some) and
in (17) (wide scope every), where in both cases we show the conventional
notation, the tree (with implicit conjunction) and the MRS equivalent:

(16) a. some(y,white(y)∧ cat(y), every(x,dog(x), chase(x, y)))
b.

some(y)

!
!

❅
❅

white(y), cat(y) every(x)

!
!

❅
❅

dog(x) chase(x,y)

c. h1: every(x, h3, h4), h3: dog(x), h7: white(y), h7: cat(y),
h5: some(y, h7, h1), h4 : chase(x, y)

(17) a. every(x,dog(x), some(y,white(y)∧ cat(y), chase(x, y)))
b.

every(x)

!
!

❅
❅

dog(x) some(y)

!
!

❅
❅

white(y), cat(y) chase(x,y)

c. h1: every(x, h3, h5), h3: dog(x), h7: white(y), h7: cat(y),
h5: some(y, h7, h4), h4 : chase(x, y)

Notice that, in terms of the MRS representation, the only difference is
in the handles for the body arguments of the two quantifiers. So if we want

Friday, June 17, 16

Quick Review

Diagrams from Copestake et al. 2005

290 ANN COPESTAKE ET AL.

These flat labeled structures are MRSs, but the reason why MRS is not
a notational variant of the conventional representation is that it allows un-
derspecification of the links in order to represent multiple scopes (rather
than requiring that each handle in an argument position also be the label
of some ep). We use the term handle for the tags in both fully specified and
underspecified links.

To illustrate scope underspecification informally, consider the represen-
tation of the sentence in (15):

(15) Every dog chases some white cat.

This has the fully specified readings shown in (16) (wide scope some) and
in (17) (wide scope every), where in both cases we show the conventional
notation, the tree (with implicit conjunction) and the MRS equivalent:

(16) a. some(y,white(y)∧ cat(y), every(x,dog(x), chase(x, y)))
b.

some(y)

!
!

❅
❅

white(y), cat(y) every(x)

!
!

❅
❅

dog(x) chase(x,y)

c. h1: every(x, h3, h4), h3: dog(x), h7: white(y), h7: cat(y),
h5: some(y, h7, h1), h4 : chase(x, y)

(17) a. every(x,dog(x), some(y,white(y)∧ cat(y), chase(x, y)))
b.

every(x)

!
!

❅
❅

dog(x) some(y)

!
!

❅
❅

white(y), cat(y) chase(x,y)

c. h1: every(x, h3, h5), h3: dog(x), h7: white(y), h7: cat(y),
h5: some(y, h7, h4), h4 : chase(x, y)

Notice that, in terms of the MRS representation, the only difference is
in the handles for the body arguments of the two quantifiers. So if we want

Friday, June 17, 16

Scoping an MRS

• In general, N! scopings for N quantifiers

• Many or most are equivalent (lots of
quantifiers commute), but real ambiguities
are still common

• This demo: happy to find even one;
heuristically aim for left-to-right
precedence

Friday, June 17, 16

Another review:
Generalized Quantifiers

• Classical quantifiers: ∀, ∃

• Natural language has messier things

• seventeen

• most

• (almost but not quite all)

Friday, June 17, 16

Another review:
Generalized Quantifiers

• Restriction and Body

[most x: dog(x)] bark(e, x)
[most x: dog(x)][seventeen y: cat(y)] chase(e,x,y)

• Quantifier defines relationship between set
denoted by restriction and set denoted by body

Friday, June 17, 16

Interpreting scoped ERG-
produced MRSes as SQL

• Toy world:
squares, circles, triangles
red, yellow, blue, green
happy, sad
above, below

• Single SQL relation:
id, type, color, mood, x, y

Friday, June 17, 16

MRS to SQL

• Recursively translate LF to SQL binary
expressions (everything gets a truth value)

• Atomic examples:
triangle_n_1(x) → x.type = "triangle_n_1"
red_a_1(e,x) → x.color = "red_a_1"
above_p(e,x,z) → x.y > z.y

Friday, June 17, 16

MRS to SQL

• Quantifiers are more fun, but not complex:
[∀x . R(x)] B(x) →
(select count(*) from objects x where R(x) and B(x)) =

(select count(*) from objects x where B(x))

[∃x . R(x)] B(x) →
(select count(*) from objects x where R(x)
and B(x)) >= 1

Friday, June 17, 16

MRS to SQL

• Language-y quantifiers:
[most x . R(x)] B(x) →
2 * (select count(*) from objects x where
R(x) and B(x)) > (select count(*) from

objects x where B(x))

[seventeen x . R(x)] B(x) →
(select count(*) from objects x
where R(x) and B(x)) >= 17

Friday, June 17, 16

MRS to SQL

• Negation

• Coordination

• Predicative NPs
A red thing that is a square is happy.
No squares are triangles.

• Demo!
http://sweaglesw.org/linguistics/objects-demo/

Friday, June 17, 16

http://sweaglesw.org/linguistics/objects-demo/
http://sweaglesw.org/linguistics/objects-demo/

