
S

Morphology and Big Parse
Charts in LKB/ACE

Olga Zamaraeva
For DELPH-IN summit
June 2016, Stanford, CA

Morphological grammars

S  Precision grammars capable of analyzing/generating words
consisting of morphemes
S  walk+ing

S  Morphology section in the choices files
S  specification

S  Morphological rules (e.g. irules) in the TDL files
S  Implementation in precision grammars

Morphological grammars

S  Precision grammars capable of analyzing/generating words
consisting of morphemes
S  walk+ing

S  Morphology section in the choices files
S  specification

S  Morphological rules (e.g. irules) in the TDL files
S  Implementation in precision grammars

Morphological grammars: choices

Affix graph

S  Affixes are nodes

S  Edges are input relations

Goal: Infer Morphology
Automatically

S  Field linguists do not have time to go through all their data
by hand

S  A system which offers them hypotheses would be helpful
S  Position classes candidates

S  Affixes participating in circumfixation

S  Etc.

Chintang [ctn]

S  IGT collection (Bickel et al., 2013)

S  Polysynthetic language

S  Possibly variable affix order

S  Circumfixes

S  Possibly iterating affixes

Oracle grammar (Bender et al.
2012)

S  54 verb position classes (+ stems)

S  54 edges (just one input for each position class in the graph).

Automatically Inferred Grammars

S  MOM (Wax, 2014)
S  54 position classes (input overlap = 30%)

S  ~400 edges

S  Clustered affixes (Zamaraeva, in press)
S  54/58 position classes (k=54)

S  ~800 edges

Evaluation by Morphological
Parsing

S  Extract words from test sentences

S  Set argument optionality in the grammar so that anything
can be dropped

S  Run the grammar on the test words with LKB/ACE

S  Evaluate
S  Also, using [incr tsdb()]

LKB/ACE technical issues

S  Chart parser

S  LKB: Max number of rules to try to apply
S  4K default
S  ~25K possible before 2GB memory is used up
S  32-bit Common Lisp license (at UW)

S  ACE:
S  Similar story?.. Will skip the item if it requires too much RAM

S  [incr tsdb()] in-built in the LKB fails with an out of memory error

Evaluation: failures

S  True failures (no path in graph)
S  yuŋ-ma-dis-ma

S  NOTE: lexemes do not span position 0 `yuŋ-ma-dis-ma'!
S  NOTE: post reduction gap
S  SKIP: yuŋ-ma-dis-ma

S  Technical failures (too many paths in graph)
S  lond-a-ce-a-ŋ-e

S  NOTE: terminating search, too much RAM
S  SKIP: lond-a-ce-a-ŋ-e

What to do?..

S  We want to be able to infer morphotactics automatically (or
do we?)
S  Impose a limit on possible paths?

S  Weigh paths and discard some?

S  We want to be able to evaluate them by parsing
S  Are any improvements to the parsing/testing software

possible/realistic in the near future?

