. (Diff)List Appends in TDL

Guy Emerson

Delph-in 2017



Diff-list appends are fiddly
|

[ SYNSEM...RELS [ LIST #first,
LAST #last ],
C-CONT.RELS [ LIST #middle2,
LAST #last ],
ARGS < [ SYNSEM...RELS [ LIST #first,
LAST #middlel ]],
[ SYNSEM...RELS [ LIST #middlel,
LAST #middle2 ]] >

Code like this is hard to maintain.



Diff-list appends are mechanical
N

dl-append := avm & [ APPARG1 [ LIST #first,
LAST #between ],
APPARG2 [ LIST #between,
LAST #last ],
RESULT [ LIST #first,
LAST #last ]].

This type is in the Grammar Matrix, but a comment
explicitly says not to use it. If we can write down a
schema like this, why not write a type to
implement it?



Nice syntax
|

[ NEW-LIST.APPEND < #1, #2, #3 >,
LIST1 #1,
LIST2 #2,
LIST3 #3 ].

The aim is to write types so that this syntax is
possible.



Nice syntax
|

[ SYNSEM...RELS.APPEND < #1, #2, #3 >,
C-CONT.RELS #3,
ARGS < [ SYNSEM...RELS #1 ],
[ SYNSEM...RELS #2 ]| >

The first example with nice syntax.



Types

diff-list-append := diff-list &
[ LIST #start,
LAST #end,
APPEND list-of-dlists & [ START #start,
END #end ] ].

list-of-dlists := list &
[ START list,
END list ].

diff-list-append contains a list of diff-lists. The
idea is that this list will automatically link up the
diff-lists, put the result in START and END, and then
this result is re-entrant with LIST and LAST.

START and END are effectively creating a diff-list,
but | think it would be a bad idea to have a type
inheriting from both list and diff-1list, because
it would make it harder to spot a bug resulting
from accidentally unifying a list and a
diff-list.



Types
!

cons-of-dlists := list-of-dlists & cons &

[ FIRST diff-list & [ LIST #start,
LAST #middle ],

REST list-of-dlists & [ START #middle,
END #end ],

START #start,
END #end ].

list-of-dlists on REST propagates all the
constraints through the whole list.

#middle links up the diff-lists.

#start and #end expose the result.



Types
!

cons-of-dlists := list-of-dlists & cons &
[ FIRST diff-list & [ LIST #start,
LAST #middle ],

REST list-of-dlists & [ START #middle,
END #end ],

START #start,

END #end ].

null-of-dlists := list-of-dlists & null &
[ START #null,
END #null ].

At the end of the list of diff-lists, we need to say
there’s nothing left to add.



Normal list appends
N

= Possible:
= Convert lists to diff-lists
= Append diff-lists

= Nice syntax not possible
(without changing representation of lists)

Because there is no gravity in the type system,
specifying a type on a feature path cannot change
types higher up in the feature structure. In
particular, we need the copy operation to behave
differently for a cons and a null, but this can only
trigger changes in the features of cons or null.



Dodgy syntax

[ OUTPUT-LIST #new,
FIRST-LIST [ COPY #new,
NEXT #second ],
SECOND-LIST #second,

This syntax is possible, although it’s not as clean
as for the diff-lists. Also note that each list can
only be copied once.



Types

list-copy := list &
[ COPY 1list,
NEXT list ].

COPY stores the new open-ended list.
NEXT stores the end of the list.
This is essentially a diff-list, but as before, | didn't

want to directly inherit from both list and
diff-1list, to avoid bugs.



Types
!

cons-copy := list-copy & cons &
[ FIRST #first,
REST list-copy & [ COPY #rest,
NEXT #next ],
COPY [ FIRST #first,
REST #rest ],
NEXT #next ].

10

list-copy on REST propagates the constraints.

#first makes sure that the new list and the old
list have the same elements.

#rest makes sure that all the new list nodes
combine into one long list (see last slide)

#next makes sure that we keep pass up the last
node to the start of the list.



Types
!

cons-copy := list-copy & cons &
[ FIRST #first,
REST list-copy & [ COPY #rest,
NEXT #next ],
COPY [ FIRST #first,
REST #rest ],
NEXT #next ].

null-copy := list-copy & null &
[ COPY #next,
NEXT #next ].

10

At the end of the list, #next needs to point to the
new empty list.



cons-copy

REST _ REST _ REST _
e e /.

@) (@)

O )

U O

< <

\4

> >0

The old list nodes are on top in black, the new list
nodes are at the bottom in orange, and the
elements of the list are in the middle in purple.

The elements are shared (#first constraint).
The lists line up (#rest constraint) - following

REST.COPY will always be the same as following
COPY.REST.

11




	Types
	Normal lists
	Types

