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Some Near-Authentic Quotes and Reflections

To me, the ultimate goal of our new field of Computational Linguistics
is to build machines that, in a suitable interpretation of that term,
‘understand’ human language.

(Martin Kay, 1960s)

LREC — 26-MAY-16 (0e@ifi.uio.no)

Comparability of Linguistic Graph Banks for Semantic Parsing (2)




Some Near-Authentic Quotes and Reflections

To me, the ultimate goal of our new field of Computational Linguistics
is to build machines that, in a suitable interpretation of that term,
‘understand’ human language.

(Martin Kay, 1960s)

20 Years of Progress in Statistical Parsing
e Parsing into PTB-style trees has been a crisp task for many years;
e great advances: representations, algorithms, probabilistic models;

e ;: 0.84 (Magerman, 1994) — 0.91 (Charniak & Johnson, 2005);

e some ten years later, neural advances: 93.8 (Choe & Charniak, 2016).
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SDP: A Menagerie of Bi-Lexical Dependency Analyses

DM: DELPH-IN MRS (Bi-Lexical) Dependencies

e DeepBank: Fresh HPSG-style annotation, including logical-form semantics;

e ‘lossy’ reduction of MRS meaning representations to bi-lexical dependencies.
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DM: DELPH-IN MRS (Bi-Lexical) Dependencies

e DeepBank: Fresh HPSG-style annotation, including logical-form semantics;

e ‘lossy’ reduction of MRS meaning representations to bi-lexical dependencies.

PAS: Enju Predicate—Argument Structures
e Enju Treebank: Projection of (complete) PTB syntax to HPSG derivations;

e semantic analyses take form of lexicalized predicate—argument structures.
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e ‘lossy’ reduction of MRS meaning representations to bi-lexical dependencies.

PAS: Enju Predicate—Argument Structures
e Enju Treebank: Projection of (complete) PTB syntax to HPSG derivations;

e semantic analyses take form of lexicalized predicate—argument structures.

PSD: Parts of the Prague Tectogrammatical Layer

e Include all nodes from Prague t-trees that correspond to surface tokens;

e re-attach functors of generated nodes; project dependencies to conjuncts.
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SDP: A Menagerie of Bi-Lexical Dependency Analyses

DM: DELPH-IN MRS (Bi-Lexical) Dependencies

e DeepBank: Fresh HPSG-style annotation, including logical-form semantics;

e ‘lossy’ reduction of MRS meaning representations to bi-lexical dependencies.

PAS: Enju Predicate—Argument Structures
e Enju Treebank: Projection of (complete) PTB syntax to HPSG derivations;

e semantic analyses take form of lexicalized predicate—argument structures.

PSD: Parts of the Prague Tectogrammatical Layer

e Include all nodes from Prague t-trees that correspond to surface tokens;

e re-attach functors of generated nodes; project dependencies to conjuncts.

[ WSJ 00-20 for Training (802,717 Tokens); Section 21 for Testing (31,948). ]
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Linguistic Comparison of Target Representations
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DM PAS PSD
LF LP LR LF LM LP LR LF LM LP LR LF LM

Peking  85.91 90.27 88.54 89.40 26.71 93.44 90.69 92.04 38.13 78.75 73.96 76.28 11.05
Priberam 85.24 88.82 87.35 88.08 22.40 91.95 89.92 90.93 32.64 78.80 74.70 76.70 09.42
Copenhagen-
Malmo
Potsdam 77.34 79.36 79.34 79.35 07.57 88.15 81.60 84.75 06.53 69.68 66.25 67.92 05.19
Alpage  76.76 79.42 77.24 78.32 09.72 85.65 82.71 84.16 17.95 70.53 65.28 67.81 06.82
Linkbping 72.20 78.54 78.05 78.29 06.08 76.16 75.55 75.85 01.19 60.66 64.35 62.45 04.01
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e Ensemble system (including graph parsers) best in ‘closed’ track;
e high per-dependency scores: 76 —92 F; for best ‘closed’ systems;
e exact match sentence accuracy a bit less encouraging: 9 —38 %,;

e parsers based on (only) tree approximations not fully competitive;

e PAS overall easiest to parse, (labeling) PSD is noticeably harder;
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Priberam 85.24 88.82 87.35 88.08 22.40 91.95 89.92 90.93 32.64 78.80 74.70 76.70 09.42

Comparison 01
.19
e graph adaptation of (‘syntactic’) TurboParser as best ‘open’ system; ;go

1.01

e (full) ‘In-House’ systems perform several F; points ahead of the field.
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CCD

New in 2016: CCG Word-Word Dependencies
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CCD: Canonical Conversion from CCGbank

e Connect lexical dependencies with properties from derivation in CCGbank;

e CCG categories as ‘frame’ identifiers; edge labels identify argument position.
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Closer to Home: Abstract Semantic Graphs (E.g. EDS)

RGI1
@ _impossible_a_for
RG1 ARGI
ARGI BV ARG2 ARG3 BV ARGI

<
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EPE 2017: Candidate Downstream Applications

Biological Event Extraction (Bjorne, et al., 2009)
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EPE 2017: Candidate Downstream Applications

Biological Event Extraction (Bjorne, et al., 2009)

Negation Scope and Focus (Lapponi, et al., 2012)
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EPE 2017: Candidate Downstream Applications

Biological Event Extraction (Bjorne, et al., 2009)

Negation Scope and Focus (Lapponi, et al., 2012)

Fine-Grained Opinion Analysis (Johansson & Moschitti, 2013)
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EPE 2017: Candidate Downstream Applications

Biological Event Extraction (Bjorne, et al., 2009)

Negation Scope and Focus (Lapponi, et al., 2012)
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Zooming In: Resolving Negation Scope (*SEM 2012)

But { this theory would} (not) {work}.
| think, Watson, {a brandy and soda would do him} (no) {harm}.
They were all confederates in {the same} (un){known crime}.

“Found dead (without) {a mark upon him}.
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Zooming In: Resolving Negation Scope (*SEM 2012)

But { this theory would} (not) {work}.
| think, Watson, {a brandy and soda would do him} (no) {harm}.
They were all confederates in {the same} (un){known crime}.
“Found dead (without) {a mark upon him}.

{We have} (never) {gone out (without) { keeping a sharp watch}},
and (no) {one could have escaped our notice}.”
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Zooming In: Resolving Negation Scope (*SEM 2012)

But { this theory would} (not) {work}.
| think, Watson, {a brandy and soda would do him} (no) {harm}.
They were all confederates in {the same} (un){known crime}.
“Found dead (without) {a mark upon him}.

{We have} (never) {gone out (without) { keeping a sharp watch}},
and (no) {one could have escaped our notice}.”

Morante et al. (2011); Morante & Daelemans (2012)

e Fresh annotation of negation cues and their (possibly discontinous) scopes;

e semantics: “Scope of negation is the part of the meaning that is negated [...]”
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Zooming In: Resolving Negation Scope (*SEM 2012)

But { this theory would} (not) {work}.
| think, Watson, {a brandy and soda would do him} (no) {harm}.
They were all confederates in {the same} (un){known crime}.
“Found dead (without) {a mark upon him}.

{We have} (never) {gone out (without) { keeping a sharp watch}},
and (no) {one could have escaped our notice}.”

Morante et al. (2011); Morante & Daelemans (2012)

e Fresh annotation of negation cues and their (possibly discontinous) scopes;

e semantics: “Scope of negation is the part of the meaning that is negated [...]”

Phorbol activation was positively modulated by Ca2+ influx
while {TNF alpha activation was} (not).
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Interchange Format for Syntactico-Semantic Graphs
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Participating Teams and Approaches

LREC — 26-MAY-16 (0e@ifi.uio.no)

Comparability of Linguistic Graph Banks for Semantic Parsing (11)




Preliminary Results: Many Dimensions of Variation
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Very Much in the Making these Days ...

http://epe.nlpl.eu
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