Feature Extraction for Pathology Reports Classification with Precise Negation Scope Detection

Olga Zamaraeva, Kristen Howell, & Adam Rhine University of Washington Department of Linguistics

> DELPH-IN Summit in Oslo, Norway August 7 2017

Overview

- Broad task: Classify pathology reports as lymph node positive or negative
 – Did the cancer spread to the lymph nodes?
- Core task: find concepts which could be important features (e.g. *malignancy*) in negated context
 - "No malignancy was found in the lymph nodes."
 - "Metastasis: not identified."

RQ 1: How good ERG is for negation detection?

- McKinlay et al (2012)
 - Used ERG to find negation scope
 - Evaluated on sentence level (intrinsic evaluation of negation scope detection)
 - Data: Biomedical literature
 - Events of interest are already identified in the data in previous stages.
 - Feature vectors are constructed for these events, and then the events are classified in terms of negation scope.
- Packard et al. (2012)
 - Negation scope in Sherlock Holmes stories.

RQ2: Is negation important (for classification)?

- ...and if so, can we classify better with ERG?
- Maybe not:
 - Words that occur negated as well as not negated will likely not be selected as most informative
- Maybe yes:
 - Negated concepts may be good features themselves
 - (Also, machine learning classification is not the only scenario)

Dataset

• SEER program (https://seer.cancer.gov/)

	Total	LN	POS	NEG	UNK
Training	581	298	52	91	155
Test	293	137	26	44	67

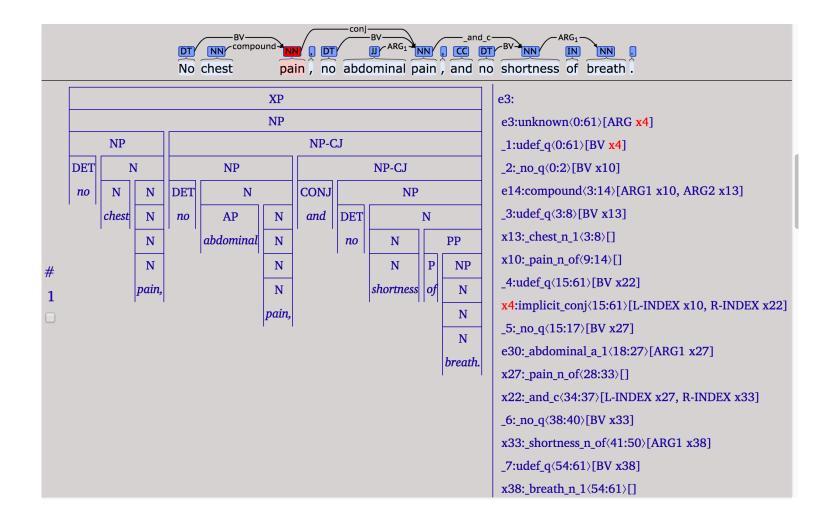
- Annotated on report level
 - Not annotated for negation scope
 - Makes our approach amenable only to extrinsic evaluation

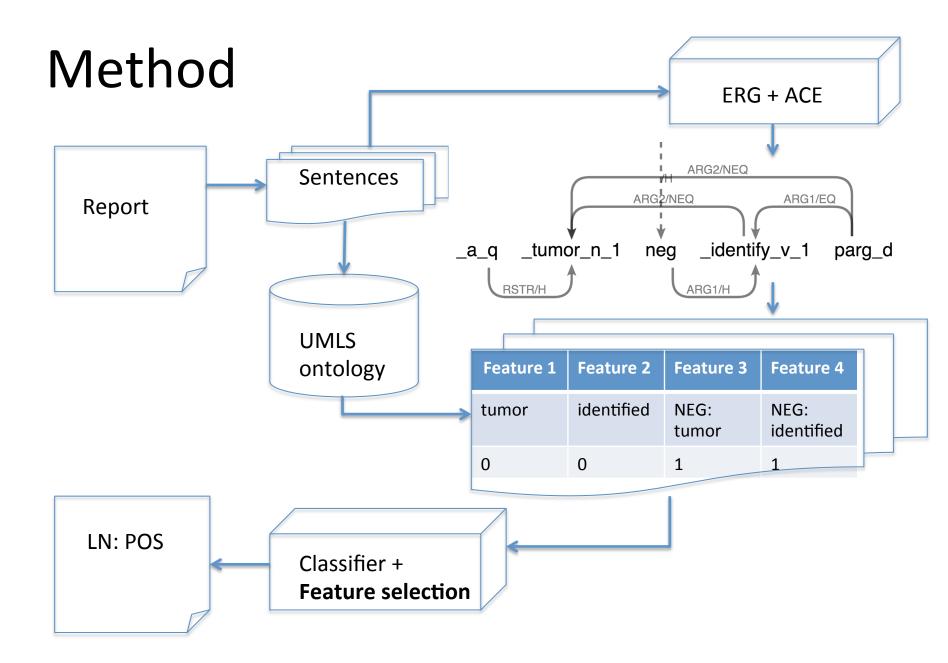
(Extrinsic) Evaluation

- Compare to NegEx
 - Chapman et al. (2002)
 - Regular expressions-based
 - Very widely used
 - Easy to adapt to any English dataset
- Comparing rule-based to rule-based*
 - Independent of the dataset?
 - Not too many added heuristics?

*negation detection

Example where NegEx fails





Feature Selection

Selection algorithm		with NegEx	with ERG
Variance Threshold (90%) (VT)	total	356	368
	negated	22	6
K-best (K=100)	total		100
\mathbf{K} -Dest (\mathbf{K} -100)	negated	17	7
Best percentile (10%)	total	$ \overline{488} $	408
Dest percentile (10%)	negated	88	13
Wrapper: AdaBoost (AB)	total	37	37
Wiapper. Adaboost (AD)	negated	1	2
Wrapper: Random Forest (RF)	total	$ \overline{489} $	515
wrapper. Kandom Porest (KP)	negated	79	24
Wrapper: Logistic Regression (LR)	total	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1061
whappen. Logistic Regression (LR)	negated	186	37

(Null? Incremental?) Results

Scikit Learn												
Classifiers Feature selectors												
$FS \rightarrow$	VT AB RF K=100 10% LR									R		
CL	NE	ERG	NE	ERG	NE	ERG	NE	ERG	NE	ERG	NE	ERG
AB	0.74	0.76	0.71	0.73	0.69	0.74	0.69	0.64	0.69	0.72	0.77	0.69
DT	0.66	0.72	0.68	0.76	0.69	0.69	0.70	0.69	0.74	0.75	0.74	0.66
KNN	0.67	0.61	0.73	0.76	0.66	0.69	0.71	0.69	0.69	0.68	0.61	0.61
SVM	0.74	0.74	0.76	0.78	0.77	0.74	0.72	0.74	0.75	0.78	0.74	0.74
NB	0.64	0.66	0.42	0.39	0.69	0.69	0.34	0.36	0.64	0.68	0.55	0.59
NN	0.70	0.72	0.72	0.80	0.77	0.73	0.72	0.72	0.74	0.78	0.73	0.73
RF	0.73	0.75	0.76	0.80	0.78	0.77	0.74	0.74	0.76	0.77	0.75	0.76

F1 micro-average classification scores

Results on more constrained models

$FS \rightarrow$	AB				RF		GB		
CL	BL	NE	ERG	BL	NE	ERG	BL	NE	ERG
AB	0.72	0.75	0.73	0.74	0.72	0.74	0.73	0.72	0.73
RF	0.77	0.76	0.74	0.78	0.75	0.75	0.72	0.71	0.73
GB	0.77	0.77	0.77	0.77	0.77	0.73	0.74	0.76	0.75
VT	0.77	0.77	0.76	0.77	0.75	0.75	0.74	0.75	0.74

Micro-average F1 scores

- No improvement from adding any negated features

Better(?) results

- Same dataset, filtered for "Laterlality Category": Left or Right (lung, breast etc).
 - "Better" (bigger, more balanced) dataset,
 - but still small, reports are still different length etc.

	AB			RF			GB		
CL	BL	NE	ERG	BL	NE	ERG	BL	NE	ERG
AB	0.87	0.86	0.86	0.83	0.77	0.87	0.84	0.86	0.85
						0.86			
GB	0.87	0.87	0.87	0.80	0.78	0.84	0.87	0.87	0.87
Vt	0.87	0.87	0.86	0.81	0.79	0.86	0.86	0.86	0.86

Micro-average F1 scores

Issues

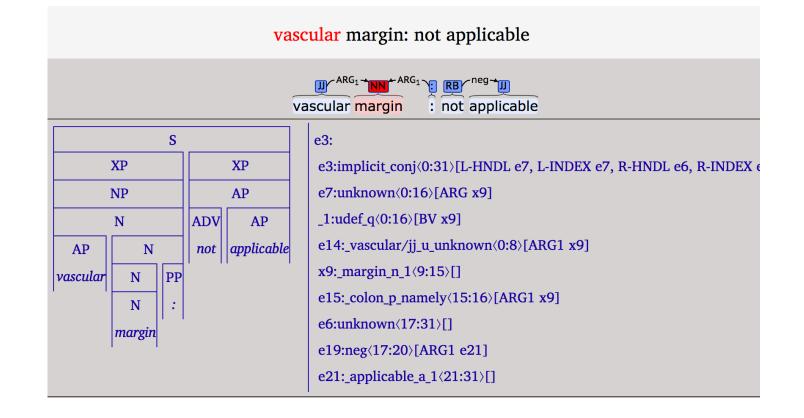
- Sentences are fragmented
 - Easy to make mistakes in tokenization
 - Difficult to parse in a meaningful way
- Dataset is small and unbalanced
 - Few ML algorithms are effective
 - Very hard to select features/not overfit
- All changes/tuning that we tried so far did not lead to much change in the results
 - Some negated features are among the selected ones but not many of them

Parse Issues

- Parse coverage
 - 79% (22K/28K)
 - E.g. Despite an FDA approved scoring guide that classifies 2+ immunohistochemistry results as equivocal, the literature suggests that up to 70% of these cases may be actually the fluorescence in situ hybridization (FISH) negative.
 - E.g. Necrosis of invasive component: not identified.
 - fall back?
 - if fall back to NegEx, it adds more feature tokens than ERG (6K vs. 4K)
 - Compare only sentences for which have a parse?
 - Results still seem null/incremental
- Parse selection
 - Often one of the first parses is good but not the top parse.
 - E.g. No X or Y were identified.
 - Though, selecting widest scope did not help classification
 - Different top parse with fragmenting on/off
- MRS crawling is basic
 - Just looking at *neg* relation and its ARG1, ARG2 and *no* quantifier for nouns

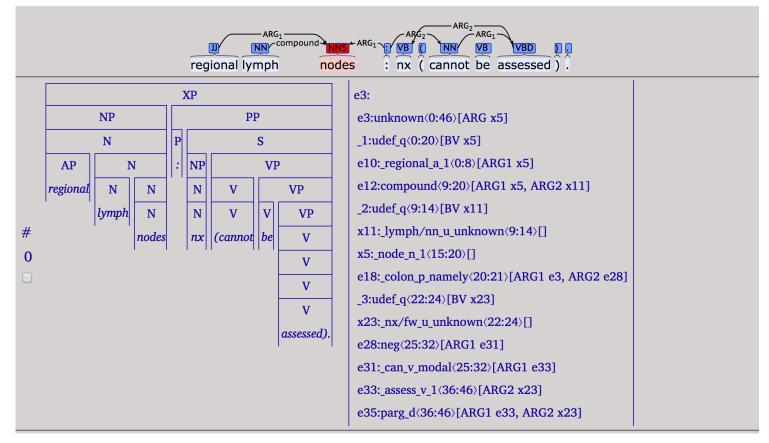
Parse selection issues

- Tumor: not identified
 - Often times, *identified* is parsed as a post-head adjective (*not_c*) rather than a predicate (*neg*).



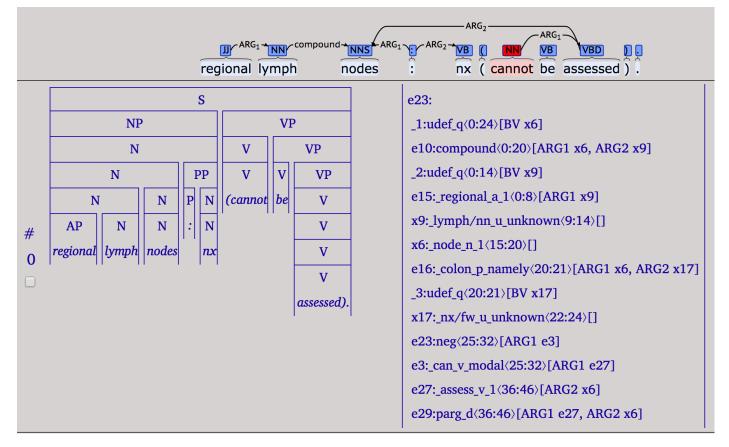
Parse selection issues

• Passive voice with modals: top-ranked parse with fragments on:



Parse selection issues

• Passive voice with modals: top-ranked parse with fragments off:



Conclusion

- ERG should be more useful than something like NegEx for finding negated items.
 - Without too many heuristics for crawling MRS?..
 - Even with heuristics, MRS is more general than surface strings
- How to achieve results that clearly show this?
 - So far, improving parse selection did not help.
 - Need to work more on tuning parameters for classifiers and (especially) feature selection