Data-Driven Deep Dependency Parsing

Weiwei Sun

Institute of Computer Science & Technology Peking University

August 8, 2017

Outline

The Covert Helps Parse the Overt

Semantic Dependency Parsing

Question

HPSG PET, Enju, ACE, ... CCG C&C, ... LFG XLE, ...

PCFG Collins, Charniark&Johnson, Berkeley, ... Data-driven MST, Mate, Malt, SyntaxNet, Stanford, ZPar, RNNG,

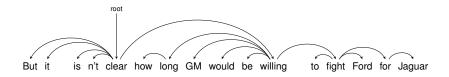
Question

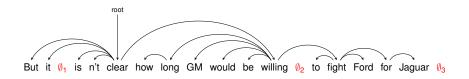
HPSG PET, Enju, ACE, ... CCG C&C, ... LFG XLE, ...

. . .

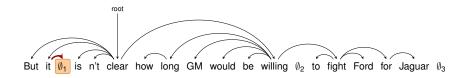
Can deep syntactic information help surface parsing?

PCFG Collins, Charniark&Johnson, Berkeley, ... Data-driven MST, Mate, Malt, SyntaxNet, Stanford, ZPar, RNNG,

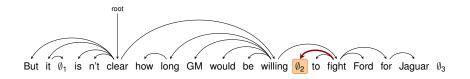




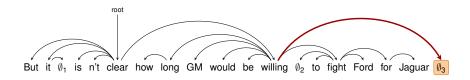
- \emptyset_1 : expletive construction.
- Ø₂: the subject of *fight* is somehow missing because it is *controled* by the subject of *willing*.
- Ø₃: *wh*-movement in which an adjunct of *willing*, i.e. *how long* is moved to the front of the clause.



- \emptyset_1 : expletive construction.
- Ø₂: the subject of *fight* is somehow missing because it is controled by the subject of *willing*.
- Ø₃: *wh*-movement in which an adjunct of *willing*, i.e. *how long* is moved to the front of the clause.



- \emptyset_1 : expletive construction.
- Ø₂: the subject of *fight* is somehow missing because it is controled by the subject of willing.
- Ø₃: *wh*-movement in which an adjunct of *willing*, i.e. *how long* is moved to the front of the clause.



- \emptyset_1 : expletive construction.
- Ø₂: the subject of *fight* is somehow missing because it is controled by the subject of *willing*.
- Ø₃: *wh*-movement in which an adjunct of *willing*, i.e. *how long* is moved to the front of the clause.

But it is n't clear how long GM would be willing to fight Ford for Jaguar

Task

- Predicting empty elements
- Predicting dependencies, including dependencies between normal and empty elements

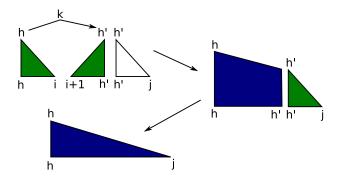
But it \emptyset_1 is n't clear how long GM would be willing \emptyset_2 to fight Ford for Jaguar \emptyset_3

Task

- Predicting empty elements
- Predicting dependencies, including dependencies between normal and empty elements

Task

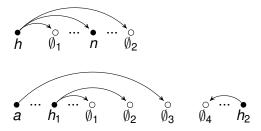
- Predicting empty elements
- Predicting dependencies, including dependencies between normal and empty elements



Prototypes of structures with empty categories

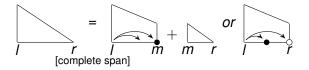
Assumption

Empty nodes can be only dependents.

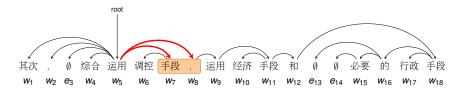


incomplete spans: a dependency and the region between the head and modifier.

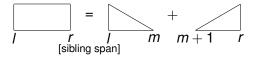
complete spans: a head-word and its descendents on one side



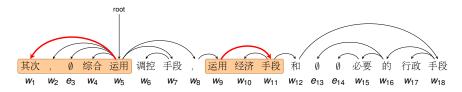
incomplete spans: a dependency and the region between the head and modifier.



sibling span: the region between successive modifiers of same head.

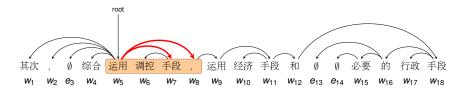


incomplete spans: a dependency and the region between the head and modifier.

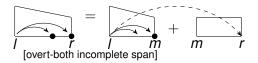


overt-outside incomplete span

incomplete spans: a dependency and the region between the head and modifier.



overt-both incomplete span



incomplete spans: a dependency and the region between the head and modifier.



covert-inside incomplete span

incomplete spans: a dependency and the region between the head and modifier.

covert-ouside incomplete span

incomplete spans: a dependency and the region between the head and modifier.

Evaluation

Disambiguation: Global linear model

$$f(\boldsymbol{y}) = \sum_{\boldsymbol{p} \in \boldsymbol{y}} \mathbf{w}_f^\top \phi_f(\boldsymbol{s}, \boldsymbol{p})$$

Results: unlabeled attachment score for all overt words

Model	English	Chinese
second-order	91.73	89.16
$+\emptyset$ (partial)	91.70 (-0.03)	89.20 (+0.04)
$+\emptyset$ (full)	91.72 (-0.01)	89.28 (+0.12)
third-order	92.23	90.00
$+\emptyset$ (partial)	92.41 (+0.18)	89.82 (-0.18)

Evaluation

Disambiguation: Global linear model

$$f(\boldsymbol{y}) = \sum_{\boldsymbol{p} \in \boldsymbol{y}} \mathbf{w}_f^\top \phi_f(\boldsymbol{s}, \boldsymbol{p})$$

Results: unlabeled attachment score for all overt words

Model	English	Chinese
second-order	91.73	89.16
$+\emptyset$ (partial)	91.70 (<mark>-0.03</mark>)	89.20 (+ <mark>0.04</mark>)
$+\emptyset$ (full)	91.72 (<mark>-0.01</mark>)	89.28 (<mark>+0.12</mark>)
third-order	92.23	90.00
$+\emptyset$ (partial)	92.41 (<mark>+0.18</mark>)	89.82 (<mark>-0.18</mark>)

Analysis

Two types of errors

- Approximation error
- Estimation error

Information about empty categories is helpful for reducing the approximation error, but brings new challenge for estimation.

Structure Regularization with joint decoding

$$\begin{array}{ll} \max & \lambda f(\boldsymbol{y}) + (1 - \lambda) g(\boldsymbol{z}) \\ \text{s.t.} & \boldsymbol{y} \in \mathcal{Y}, \boldsymbol{z} \in \mathcal{Z} \\ & \boldsymbol{y}(i,j) = \boldsymbol{z}(i,j), \; \forall (i,j) \in \mathcal{I} \end{array}$$

Results

	Algo	English	Chinese
CM	1+3	91.94 (+0.21)	89.53 (+0.37)
	1+4	91.88 (+0.15)	89.44 (+0.28)
DD	1+3	91.96 (+0.23)	89.53 (+0.37)
	1+4	91.94 (+0.21)	89.53 (+0.37)
CM	2+5	92.60 (+0.37)	90.35 (+0.35)
DD	2+5	92.71 (+0.48)	90.38 (+0.38)

Two joint decoders

CM Chart merging DD Dual decomposition

Results

	Algo	English	Chinese
CM	1+3	91.94 (+0.21)	89.53 <mark>(+0.37)</mark>
	1+4	91.88 <mark>(+0.15)</mark>	89.44 (+0.28)
DD	1+3	91.96 <mark>(+0.23)</mark>	89.53 (+0.37)
	1+4	91.94 (+0.21)	89.53 (+0.37)
CM	2+5	92.60 (+0.37)	90.35 <mark>(+0.35)</mark>
DD	2+5	92.71 (+0.48)	90.38 (+0.38)

Two joint decoders

CM Chart merging DD Dual decomposition

Outline

The Covert Helps Parse the Overt

Semantic Dependency Parsing

They use our semantics, but don't use our grammar.

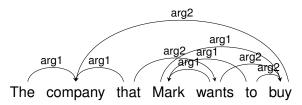
They use our semantics, but don't use our grammar.

Grammar as an annotator.

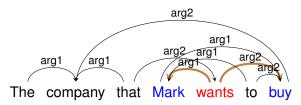
Zhang Yi

Robust Deep Linguistic Processing

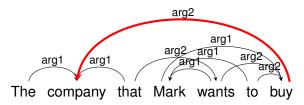
Large-scale Corpus-Driven PCFG Approxmation of an HPSG



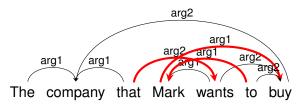
- Predicate-argument analysis, bi-lexical relations
- Long-distance dependencies
- Graph-structured representations, many crossing arcs
- Not a tree: single-headed (X), cycle-free (X)



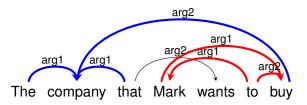
- Predicate—argument analysis, bi-lexical relations
- Long-distance dependencies
- Graph-structured representations, many crossing arcs
- Not a tree: single-headed (X), cycle-free (X)



- Predicate-argument analysis, bi-lexical relations
- Long-distance dependencies
- Graph-structured representations, many crossing arcs
- Not a tree: single-headed (X), cycle-free (X)



- Predicate-argument analysis, bi-lexical relations
- Long-distance dependencies
- Graph-structured representations, many crossing arcs
- Not a tree: single-headed (X), cycle-free (X)



- Predicate-argument analysis, bi-lexical relations
- Long-distance dependencies
- Graph-structured representations, many crossing arcs
- Not a tree: single-headed (X), cycle-free (X)

Parsing approaches

Approaches

- Maximum Subgraph Parsing
- Transition-based Parsing
- Graph Merging

Maximum Subgraph

Input A directed graph G = (V, A)Output Subgraph $G' = (V, A' \subseteq A)$ with maximum total weight such that G' belongs to \mathcal{G}

$$G'(s) = \arg \max_{H \in \mathcal{G}(s,G)} \sum_{p \in H} \mathsf{SCOREPART}(s,p)$$

 Example When G is tree, Maximum Subgraph = Maximum Spanning Tree
 Complexity G and the order of SCOREPART determine the complexity of inference.

Complexity

\mathcal{G}	0	Algo	
Arbitrary	1	$O(n^2)$	
Arbitrary	2	NP-hard	ACL15
Acyclic	1	NP-hard	Kuhlmann & Jonsson
Noncrossing	1	$O(n^3)$	Kuhlmann & Jonsson
Noncrossing	2	$O(n^4)$	ACL17a
1-endpoint-crossing	1	$O(n^5)$	Ongoing work
1-endpoint-crossing	1	$O(n^5)$	ACL17b
pagenumber-2			
1-endpoint-crossing	1	$O(n^4)$	ACL17b
pagenumber-2, C-free			
1-endpoint-crossing	2	$O(n^4)$	EMNLP17
pagenumber-2, C-free			

Transition-based parsing

- Psycholinguistically motivated: Left-to-right, word-by-word
- Partially parsed results (parsing states) constrain parsing of subsequent words
- Usually, perform greedy search to get a *good* parse.

New transition systems

A naive idea

PARSE
$$(x = (w_1, ..., w_n))$$

1 for $j = 1..n$
2 for $k = j - 1..1$
3 Link (j, k)

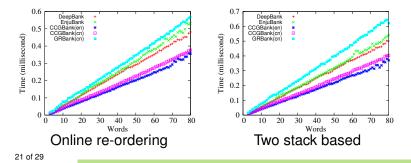
New transition systems

G	System
Arbitrary graphs	Two-stack-based
Arbitrary graphs	Non-incremental online reordering
Supersets of	Incremental K-permutation
noncrossing graphs	

Real running time

Naive spanning runs in time of $\Theta(n^2)$ 1 for j = 1..n2 for k = j - 1..13 Link(j, k)

New systems



A new framework

Challenge of graph parsing

- Complex graphs are difficult to construct for its complex structure.
- Simple graphs can be solved more easily, but the coverage is not satisfactory.

Graph merging

Constructing a complex structure via constructing simple partial structures.

A new framework

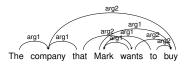
Challenge of graph parsing

- Complex graphs are difficult to construct for its complex structure.
- Simple graphs can be solved more easily, but the coverage is not satisfactory.

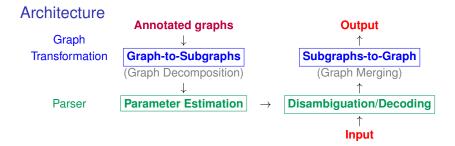
Graph merging

22 of 29

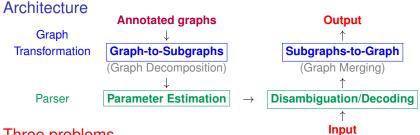
Constructing a complex structure via constructing simple partial structures.



Workflow



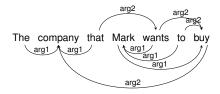
Workflow



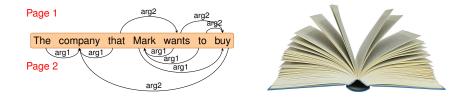
Three problems

- **Training** How to decompose a complex graph into noncrossing graphs?
- Parsing How to construct simple graphs?
- Parsing How to merge subgraphs into a coherent complex graph?

Book embedding



Book embedding

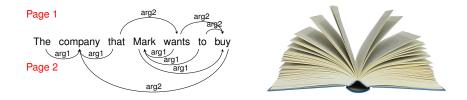


book embedding

A book embedding *B* of *G* satisfies the following conditions.

- 1. Every vertex of *G* is depicted as a point on the spine of *B*.
- 2. Every edge of *G* is depicted as a curve that lies within a single page of *B*.
- 3. Every page of *B* does not have any edge crossings.

Book embedding

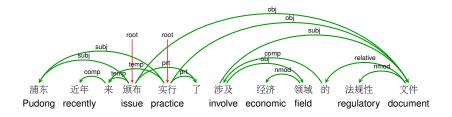


book embedding

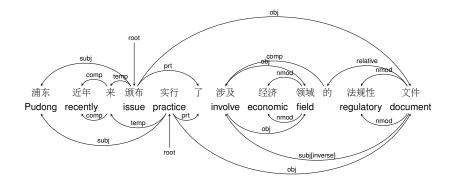
A book embedding *B* of *G* satisfies the following conditions.

- 1. Every vertex of *G* is depicted as a point on the spine of *B*.
- 2. Every edge of *G* is depicted as a curve that lies within a single page of *B*.
- 3. Every page of *B* does not have any edge crossings.

Tree + Tree + ...



Tree + Tree + ...



Decomposing and combining subgraphs

Decomposition as Optimization

$$\begin{array}{ll} \max. & \sum_{k} \boldsymbol{s}_{k}(\boldsymbol{y}_{k}) \\ \text{s.t.} & \boldsymbol{y}_{k} \text{ belongs to } \mathcal{G}_{k} \\ & \sum_{k} \boldsymbol{y}_{k}(i,j) \geq \boldsymbol{y}(i,j), \forall i,j \end{array}$$

Combination as Optimization

$$\begin{array}{ll} \text{min.} & -f_A(\mathbf{g}_A) - f_B(\mathbf{g}_B) \\ \text{s.t.} & \mathbf{g}_A \text{ belongs to } \mathcal{G}_A, \mathbf{g}_B \text{ belongs to } \mathcal{G}_B \\ & A\mathbf{g}_A + B\mathbf{g}_B \leq 0 \end{array}$$

Usually, we can employ Lagrangian Relaxation for solutions.

Data-driven models can produce high-quality deep dependency analysis.

Another experience

Game Over

