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Overview

� overview of a methodology for analysing behavior of neural
dependency parsers: controlled language alterations

� a few experiments on Polish dependency parsing (with Universal
Dependencies)
still work in progress

2 of 34



Motivation

� the relations between words can be signaled in a variety of ways;
primarily through word order and morphological markings, but
lexical information can also serve as a cue

� in DELPH-IN the lexical information is only exploited during parse
ranking

� the neural parsers for UD get word-embeddings as inputs, which
encode a mixture of lexical and morphosyntactic information

� To what extent the models exploit those different cues? To what
extent they are capable of exploiting them?

3 of 34



Motivation

� the relations between words can be signaled in a variety of ways;
primarily through word order and morphological markings, but
lexical information can also serve as a cue

� in DELPH-IN the lexical information is only exploited during parse
ranking

� the neural parsers for UD get word-embeddings as inputs, which
encode a mixture of lexical and morphosyntactic information

� To what extent the models exploit those different cues? To what
extent they are capable of exploiting them?

3 of 34



Motivation

� the relations between words can be signaled in a variety of ways;
primarily through word order and morphological markings, but
lexical information can also serve as a cue

� in DELPH-IN the lexical information is only exploited during parse
ranking

� the neural parsers for UD get word-embeddings as inputs, which
encode a mixture of lexical and morphosyntactic information

� To what extent the models exploit those different cues? To what
extent they are capable of exploiting them?

3 of 34



Motivation

� the relations between words can be signaled in a variety of ways;
primarily through word order and morphological markings, but
lexical information can also serve as a cue

� in DELPH-IN the lexical information is only exploited during parse
ranking

� the neural parsers for UD get word-embeddings as inputs, which
encode a mixture of lexical and morphosyntactic information

� To what extent the models exploit those different cues? To what
extent they are capable of exploiting them?

3 of 34



Why answering this question is important?

� it could reveal the typological biases present in the models

� which cues are used has consequences for the model’s robustness
and its ability to generalize
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Controlled Language Alterations

The idea: Methodologically altering the original language data by
stripping it of specific information/cue.

Could be used both at training and testing: to get insight into the
models capacity to exploit different cues.

Or just at testing: to get insight into what cues the models rely on.
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Some Examples
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Lemmatisation

Dwie dziewczynki bawią się na placu.
Two girls play (rflx) on square

nummod nsubj
expl:pv

obl

case

*Results in ungrammatical sentences
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Lemmatisation

Dwa dziewczynka bawić się na plac.
Two girl play (rflx) on square

nummod nsubj
expl:pv

obl

case

*Results in ungrammatical sentences
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Word Order Permutation

Dwie dziewczynki bawią się na placu.
Two girls play (rflx) on square

nummod nsubj
expl:pv

obl

case

*Results in ungrammatical sentences
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Word Order Permutation

Bawią placu dziewczynki się dwie na.
Play square girls (rflx) two on

nummodnsubj

expl:pv

obl

case

*Results in ungrammatical sentences
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Mixed Noun Lexemes

Dwie dziewczynki bawią się na placu.
Two girls play (rflx) on square

nummod nsubj
expl:pv

obl

case

Mały pies biegnie po chodniku.
Little dog runs on pavement

amod nsubj

obl

case

*Results in (mostly) grammatical sentences
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Mixed Noun Lexemes

Dwa chodniki bawią się na psie.
Two pavements play (rflx) on dog

nummod nsubj
expl:pv

obl

case

Mała dziewczynka biegnie po placu.
Little girl runs on square

amod nsubj
obl

case

*Results in (mostly) grammatical sentences
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Other experiments (not discussed here)

� Removing case marking

� Mixing in very rare/nonce words

� Varying the word order of the core elements in the clause; SVO,
SOV etc.

� And more...
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Closely Related Work

� Ravfogel et al. (2019) create synthetic versions of English, by
changing the typological parameters, and experiment with RNNs on
predicting agreement features for verbs.

� Gulordava et al. (2018) substitute content words by random words
with matching POS and morphology, and experiment on predicting
long-distance number agreement.

� Kasai and Frank (2019) evaluate parsers in the absence of lexical
information, by zeroing out word embeddings (they become OOVs).

� Zheng et al. (2020) craft adversarial examples for parsers by
replacing few words in an input sentence, while maintaining both
syntactic and semantic coherence.

11 of 34



Experiments
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Experimental Details
Model: (Dozat and Manning, 2017)
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Experimental Details
Different inputs:
� fastText (Bojanowski et al., 2017) – an embedding for a word is
constructed by summing the embeddings of its n-grams

� CNN over characters (Kim et al., 2016)
� fastText + CNN
� BERT (Devlin et al., 2019)

Data:
� The Polish PDB-UD treebank (Wróblewska, 2018)
� 22,152 sentences (dev set 2215 sents with average length of 16
tokens)

Metric reported in all graphs: Labeled Attachment Score
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1. An insight into the models’
capability to exploit different cues

the models are trained and evaluated on the altered data
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Polish dependency parsing results
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Insights

� the models can exploit different cues to make predictions

� the models do not have to make use of morphological cues to get
good performance
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2. An insight into what cues are exploited
by models trained on unaltered data.

the models are only evaluated on the altered data
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Zooming Into Core Verbal Arguments:
Rotation of Core Verbal Arguments

Kobieta w kombinezonie maluje obraz.
Woman in jumpsuit paints painting

nsubj

case

nmod

obj

*Results in grammatical sentences
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Zooming Into Core Verbal Arguments:
Rotation of Core Verbal Arguments

Obraz w kombinezonie maluje kobietę.
Painting in jumpsuit paints woman

nsubj

case

nmod

obj

*Results in grammatical sentences
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Zooming Into Core Verbal Arguments
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*Evaluation on sentences with transitive verbs.
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Concluding Remarks and Questions

� the models use a mixture of different cues

� they do rely on morphology and strongly rely on word order

� but at times the lexical signal overpowers the morphosyntactic cues

Is this semantic overfitting a big issue?

Could this methodology help to further reveal whether the models
have a ‘preference’ for any particular morphosyntactic signal, e.g. rigid
word order over flexible word order, adpositions over case markings?
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Compared to other interpretability approaches (Belinkov
et al., 2020)

Unlike probing (Hewitt and Manning, 2019; Hewitt and Liang, 2019)
the goal is not to reveal whether the model’s representations capture a
specific feature, but to understand how the different parts of the
model’s ‘knowledge’ are used to make predictions.

The approach is related to constructing challenge sets (McCoy et al.,
2019; Paperno et al., 2016), but quite different – we have multiple
altered versions of the original data that can be ungrammatical.
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