Can Dependency Aid Natural Language Generation?

Cases from English and Japanese

Gyu-min Lee (Korea University, gyuminlee@korea.ac.kr)

July 14 2020

Can Dependency Aid NLG

(4) (3) (4) (4) (4)

Outline

1 Who am I?

Introduction

- Status
- Problem
- Solution

Method

- Data
- Model

Gyu-min Lee

A D N A B N A B N A B N

• Gyu-min Lee

- Graduated from Handong University (Pohang, ROK)
 - B.A. in Studies of English & Counseling Psychology
 - Minored in Computer Science
- Student at Korea University Graduate School (Seoul, ROK)
 - For M.A. in Linguistics
 - Majoring in Computational Linguistics
 - Under the guidance of Prof. Sanghoun Song

A D N A B N A B N A B N

- Gyu-min Lee
- Graduated from Handong University (Pohang, ROK)
 - B.A. in Studies of English & Counseling Psychology
 - Minored in Computer Science
- Student at Korea University Graduate School (Seoul, ROK)
 - For M.A. in Linguistics
 - Majoring in Computational Linguistics
 - Under the guidance of Prof. Sanghoun Song

イロト イボト イヨト イヨト

- Gyu-min Lee
- Graduated from Handong University (Pohang, ROK)
 - B.A. in Studies of English & Counseling Psychology
 - Minored in Computer Science
- Student at Korea University Graduate School (Seoul, ROK)
 - For M.A. in Linguistics
 - Majoring in Computational Linguistics
 - Under the guidance of Prof. Sanghoun Song

→ ∃ →

Gyu-min Lee

- A little background
 - "I would like to help others to understand the information written in other languages through (automatic) translation." – ME (2003)
 - "Programming is so fun!" also ME (2008)
 - Science track at high school
 - Started as Computer Science major
 - Eventually, English & Counseling Psychology
 - "Deep understanding of syntax can help others (including machines) to understand the language!" – ME as well (2015)

Research Interests

- Syntactic analysis of human language
- Machine natural language generation
- Introduction of rich grammar to NLP

• Project Participation

- In writing a proposal for deep analysis of KFL learners
- In writing a proposal for Korean NER development
- In building a library for syntactic experiments for Korean language using neural LMs (present)

A (10) < A (10) </p>

Research Interests

- Syntactic analysis of human language
- Machine natural language generation
- Introduction of rich grammar to NLP
- Project Participation
 - In writing a proposal for deep analysis of KFL learners
 - In writing a proposal for Korean NER development
 - In building a library for syntactic experiments for Korean language using neural LMs (present)

< ∃ > <

• Why this topic?

- "NLP is so successful that it does not require feature engineering"
- But NLP still requires a lot of resources and still "sounds" computer...
- What if we "teach" the neural language model grammar?

• Where to go from here?

- More ways to teach neural LMs grammar
- Neural LMs are learning grammars how? How can we even facilitate that?
- Probing neural LMs' language acquisition
- See how much grammar we can teach for the best performance and efficiency

< □ > < □ > < □ > < □ > < □ > < □ >

• Why this topic?

- "NLP is so successful that it does not require feature engineering"
- But NLP still requires a lot of resources and still "sounds" computer...
- What if we "teach" the neural language model grammar?
- Where to go from here?
 - More ways to teach neural LMs grammar
 - Neural LMs are learning grammars how? How can we even facilitate that?
 - Probing neural LMs' language acquisition
 - See how much grammar we can teach for the best performance and efficiency

★ ∃ ► ★

What Is This?

- Master's Thesis
 - Offering a (yet another) case where linguistics matters to NLP
- The ultimate goal
 - To probe the "neural language acquisition"
 - The understanding of how neural networks acquire a language

< 回 ト < 三 ト <

The Current Status of NLG

- Natural language generation (NLG) is important from summarization to MT
- Introduction of neural networks greatly improved the surface performance of NLG
- Introduction of Seq2Seq structure further improved the NLG
- ...and once again with Attention-only Seq2Seq (a.k.a. Transformer)

Seq2Seq

Encoder

- Makes a sentence embedding vector out of source sentence vectors
- Similar to sentence classification RNN models

Decoder

- A conditional neural network language model
- Current time-step word is based on the sentential embedding vector from the Encoder and the words generated so far through translation.

Generator

 Make probability out of the vector resulting from the decoder per time-step with Softmax function

< □ > < □ > < □ > < □ > < □ > < □ >

Seq2Seq

Encoder

- Makes a sentence embedding vector out of source sentence vectors
- Similar to sentence classification RNN models
- Decoder
 - A conditional neural network language model
 - Current time-step word is based on the sentential embedding vector from the Encoder and the words generated so far through translation.

Generator

 Make probability out of the vector resulting from the decoder per time-step with Softmax function

< □ > < □ > < □ > < □ > < □ > < □ >

Seq2Seq

Encoder

- Makes a sentence embedding vector out of source sentence vectors
- Similar to sentence classification RNN models
- Decoder
 - A conditional neural network language model
 - Current time-step word is based on the sentential embedding vector from the Encoder and the words generated so far through translation.
- Generator
 - Make probability out of the vector resulting from the decoder per time-step with Softmax function

Problems with current NLG

- Room for improvement for E2E neural NLG
 - Domain-general
 - Grammatical appropriateness and naturalness
 - More predictability

(I) < (II) <

A Fundamental Issue with NLG

• Human language is hierarchical

• Yet, neural LMs treat language to be linear

• • • • • • • • • • • • •

Various Methods...

Revisiting the template-based method with information extraction

- Feature engineering, like "surprise" for pun generation

< □ > < 同 > < 回 > < 回 > < 回 >

Various Methods...

- Revisiting the template-based method with information extraction
- Teaching the machine the unlikely tokens
- Feature engineering, like "surprise" for pun generation

< □ > < 同 > < 回 > < 回 > < 回 >

Solution

Various Methods...

- Revisiting the template-based method with information extraction
- Teaching the machine the unlikely tokens
- Feature engineering, like "surprise" for pun generation

< ロト < 同ト < ヨト < ヨト

A Fundamental Issue with NLG

• Human language is hierarchical

• Yet, neural LMs treat language to be linear

• • • • • • • • • • • • •

Let's teach deep learning syntax!

- Not all the syntax rich but not efficient
- The argument structure perhaps a good balance between efficiency and linguistic richness?
- In the form of dependency
- i.e. Grammatical Relation
- Minimal Recursion Semantics?

Didn't They Learn Syntax Already?

Recent findings showing that neural language models have acquired some syntax

- If language models can perform that well with that little bit of syntactic knowledge...
- It would do much better with explicit syntax!

< □ > < □ > < □ > < □ > < □ > < □ >

Didn't They Learn Syntax Already?

- Recent findings showing that neural language models have acquired some syntax
- If language models can perform that well with that little bit of syntactic knowledge...
- It would do much better with explicit syntax!

(4) (日本)

Didn't They Learn Syntax Already?

- Recent findings showing that neural language models have acquired some syntax
- If language models can perform that well with that little bit of syntactic knowledge...
- It would do much better with explicit syntax!

• • = • • = •

Data

Data

Gold Data

- Redwoods Treebank
- Hinoki Treebank

Silver Data

Data

Data

- Gold Data
 - Redwoods Treebank
 - Hinoki Treebank
- Silver Data
 - Following Hajdik et al. (2019) that found using silver data as well improved NLG compared to gold only
 - MRS generated with ERG/JACY
 - Brown ?
 - Japanese corpora...?

Image: A Image: A

- Baseline from Hajdik et al. (2019) for English
 - From MRS
 - Encoder-decoder design
 - Bi-LSTM Encoder
 - Attention Decoder
- Transformer
- BERT/XLNet/ELECTRA...?

< □ > < 同 > < 回 > < 回 > < 回 >

- Baseline from Hajdik et al. (2019) for English
 - From MRS
 - Encoder-decoder design
 - Bi-LSTM Encoder
 - Attention Decoder
- Transformer
- BERT/XLNet/ELECTRA...?

< □ > < □ > < □ > < □ > < □ > < □ >

- Baseline from Hajdik et al. (2019) for English
 - From MRS
 - Encoder-decoder design
 - Bi-LSTM Encoder
 - Attention Decoder
- Transformer
- BERT/XLNet/ELECTRA...?

< 回 > < 三 > < 三

Model from Hajdik et al. (2019)

Gyu-min Lee

July 14 2020 19/31

Suggested Model

Gyu-min Lee

July 14 2020 20/31

Transformer

- Vaswani et al. (2017)
- Seq2Seq with only Attention mechanism
- Without any variant of recurrent neural network
- Thus, Attention is All You Need

• • = • •

Attention Mechanism

- Because long term dependency even with LSTM & GRU
- To get a good result at Google, you should QUERY well
- Given the vectors of QUERY, KEY, & VALUE,
- Attention helps us to perform the correct queries.
- i.e., attention governs how "important" each word are.

Why Transformer?

- This task is a translation between the source language of MRS representation and the target language of English and Japanese
- Linearized MRS is not free from long term dependency problem
- Using attention would help in letting the machine to understand which grammatical feature matters the most
- In other words, each attention heads will "look at" certain linguistic features, thus "learning" the syntax better

Why Not BERT and others?

- Their strength comes from being pre-trained
- Models pre-trained with MRS representation of ERG/JACY?
- If there isn't one, we can train MRS BERT, etc.
- But is it really beneficial for now?

Expected result

- Would score higher BLEU
- Would show better qualitative result
 - Hajdik et al. (2019) already showed an improvement of around 15 BLEU by implementing MRS
 - Because of the implementation of the newer model, my model would perform better
 - As Transformer outperforms RNN-based Seq2Seq *in general* in MT tasks
 - Transformer would benefit from syntax as well
- Would have learned more syntax than the general Transformer models

(4) (日本)

Implications

- Significance of rule-based, hard-coded computational grammar
- Importance of syntactic information for neural NLG
- Extension of Hajdik et al. (2019) to more languages
 - Extension to another language
 - Increased language independency of the finding
 - Implementation of a newer technology

・ 何 ト ・ ヨ ト ・ ヨ ト

State of the research

In early steps

- Literature reviews on NLG
- Literature reviews on neural LM's acquisition of syntax
- Literature reviews on machine translation
- Collecting data
 - Getting Redwoods
 - Getting Hinoki
 - Deciding on the corpora for silver dataset
- reproducing Hajdik et al. (2019)
 - Translating from their data to English
 - Using Transformer via OpenNMT

.

State of the research

SENTENCE The Cathedral and the Bazaar **PREDICTED** A bunch of the view . **LINEARIZED MRS** (|_ unknown|mood=INDICATIVE|perf=-|sf=PROP-OR-QUES ARG-NEQ|_ (|_ _and_c|num=PL|pers=3 L-INDEX-NEQ|_ (|_ _cathedral_n_1|ind=+|num=SG|pers=3 RSTR-H-of|_ (|_ _the_q|_)|_)|_ <u>R-INDEX-NEQ| (| _baz</u>aar_n_1|ind=+|num=SG|pers=3 RSTR-H-of|_ (|__the_q|_)|_)|_)|_)|_ **SENTENCE** Permission is granted to copy , distribute and / or modify this document under the terms of the Open Publication License, version card0. **PREDICTED** Fortunately , the view , " ' " ' **LINEARIZED MRS** (| in+order+to x|mood=INDICATIVE|perf=-|sf=PROP ARG1-H| (| grant v 1|mood=INDICATIVE|perf=-|sf=PROP|tense=PRES ARG2-NEQ| () _permission_n_1|num=SG|pers=3)|_ ARG1-EQ-of|_ (|_ parg_d|mood=IND<u>ICATIVE|perf=-|sf=PROP</u> ARG2-NEQ __permission_n_1 num=SG pers=3) __) __ ARG2-H __ (__ implicit_conj|mood=INDICATIVE|perf=-|sf=PROP L-HNDL-HEQ|_ (|_ _copy_v_1|mood=INDICATIVE|perf=-|sf=PROP_ARG1-NEQ|_ _permission_n_1|num=SG|pers=3_ARG2-NEQ|_ (|_ document n 1/ind=+/num=SG/pers=3 RSTR-H-of/_ (/_ _this_g_dem/_)/_)/_ //_ L-INDEX-NEQ/_ _copy_v_1|mood=INDICATIVE|perf=-|sf=PROP_R-HNDL-HEQ|_ (|__and_c|mood=INDICATIVE|perf=-|sf=PROP L-HNDL-HEQ|_ (|_ _distribute_v_to|mood=INDICATIVE|perf=-|sf=PROP ARG1-NEQ|_ _permission_n_1|num=SG|pers=3 ARG2-NEQ|_ _document_n_1|ind=+|num=SG|pers=3)|_ L-INDEX-NEQ|_ distribute v to/mood=INDICATIVE/perf=-/sf=PROP R-HNDL-HEO/ () _document_n_1|ind=+|num=SG|pers=3)|_ R-INDEX-NEQ|_ _modify_v_1|mood=INDICATIVE|perf=-|sf=PROP) | R-INDEX-NEO| and c|mood=INDICATIVE|perf=-|sf=PROP ARG1-EO-of| () under plmood=INDICATIVE|perf=-lsf=PROP ARG2-NE0| (| term n oflind=+lnum=PL|pers=3 ARG1-NE0| (| license n 1|num=SG|pers=3 RSTR-H-of|_ (|_ _the_g|_)|_ ARG1-EQ-of|_ (|_

State of the research

- Trained with a small portion of the data from Hajdik et al. (2019)
- Using OpenNMT implementation of Transformer
- for 40 steps
- In short, Transformer is applicable

< □ > < 同 > < 回 > < 回 > < 回 >

Agenda

- Write out the literature reviews
- Get the data
- Make the preprocessor (i.e. linearizer for MRS representation)
- Run the experiment with bigger epochs

-

Problems

- Where exactly do I get the Redwoods & Hinoki?
- Any model pre-trained with MRS representation of English/Japanese?
- Is OpenNMT the best choice for the task?
- Baseline model for Japanese?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))