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Abstract

Work on probabilistic models of natu-
ral language tends to focus on strings
and trees, but there is increasing in-
terest in more general graph-shaped
structures since they seem to be bet-
ter suited for representing natural lan-
guage semantics, ontologies, or other
varieties of knowledge structures. How-
ever, while there are relatively sim-
ple approaches to defining generative
models over strings and trees, it has
proven more challenging for more gen-
eral graphs. This paper describes a
natural generalization of the n-gram to
graphs, making use of Hyperedge Re-
placement Grammars to define genera-
tive models of graph languages.

1 Introduction
While most work in natural language process-
ing (NLP), and especially within statistical
NLP, has historically focused on strings and
trees, there is increasing interest in deeper
graph-based analyses which could facilitate
natural language understanding and genera-
tion applications. Graphs have a long tradi-
tion within knowledge representation (Sowa,
1976), natural language semantics (Titov et
al., 2009; Martin and White, 2011; Le and
Zuidema, 2012), and in models of deep syntax
(Oepen et al., 2004; de Marneffe and Manning,
2008). Graphs seem particularly appropriate
for representing semantic structures, since a
single concept could play multiple roles within
a sentence. For instance, in the semantic rep-
resentation at the bottom right of Figure 1
lake is an argument of both rich-in and own
in the sentence, “The lake is said to be rich
in fish but is privately owned.” However, work

on graphs has been hampered, due, in part,
to the absence of a general agreed upon for-
malism for processing and modeling such data
structures. Where string and tree modeling
benefits from the wildly popular Probabilistic
Context Free Grammar (PCFG) and related
formalisms such as Tree Substitution Gram-
mar, Regular Tree Grammar, Hidden Markov
Models, and n-grams, there is nothing of sim-
ilar popularity for graphs. We need a slightly
different formalism, and Hyperedge Replace-
ment Grammar (HRG) (Drewes et al., 1997),
a variety of context-free grammar for graphs,
suggests itself as a reasonable choice given its
close analogy with CFG. Of course, in order
to make use of the formalism we need actual
grammars, and this paper fills that gap by in-
troducing a procedure for automatically ex-
tracting grammars from a corpus of graphs.

Grammars are appealing for the intuitive
and systematic way they capture the compo-
sitionality of language. For instance, just as
a PCFG could be used to parse “the lake” as
a syntactic subject, so could a graph gram-
mar represent lake as a constituent in a parse
of the corresponding semantic graph. In fact,
picking a formalism that is so similar to the
PCFG makes it easy to adapt proven, famil-
iar techniques for training and inference such
as the inside-outside algorithm, and because
HRG is context-free, parses can be represented
by trees, facilitating the use of many more
tools from tree automata (Knight and Graehl,
2005). Furthermore, the operational paral-
lelism with PCFG makes it easy to integrate
graph-based systems with syntactic models in
synchronous grammars (Jones et al., 2012).

Probabilistic versions of deep syntactic
models such as Lexical Functional Grammar
and HPSG (Johnson et al., 1999; Riezler et
al., 2000) are one grammar-based approach to
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Transition-Based Parsing for Deep
Dependency Structures

Xun Zhang∗
Peking University

Yantao Du∗
Peking University

Weiwei Sun∗
Peking University

Xiaojun Wan∗
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Derivations under different grammar formalisms allow extraction of various dependency struc-
tures. Particularly, bilexical deep dependency structures beyond surface tree representation
can be derived from linguistic analysis grounded by CCG, LFG, and HPSG. Traditionally, these
dependency structures are obtained as a by-product of grammar-guided parsers. In this arti-
cle, we study the alternative data-driven, transition-based approach, which has achieved great
success for tree parsing, to build general dependency graphs. We integrate existing tree pars-
ing techniques and present two new transition systems that can generate arbitrary directed
graphs in an incremental manner. Statistical parsers that are competitive in both accuracy
and efficiency can be built upon these transition systems. Furthermore, the heterogeneous
design of transition systems yields diversity of the corresponding parsing models and thus
greatly benefits parser ensemble. Concerning the disambiguation problem, we introduce two
new techniques, namely, transition combination and tree approximation, to improve parsing
quality. Transition combination makes every action performed by a parser significantly change
configurations. Therefore, more distinct features can be extracted for statistical disambiguation.
With the same goal of extracting informative features, tree approximation induces tree backbones
from dependency graphs and re-uses tree parsing techniques to produce tree-related features. We
conduct experiments on CCG-grounded functor–argument analysis, LFG-grounded grammatical
relation analysis, and HPSG-grounded semantic dependency analysis for English and Chinese.
Experiments demonstrate that data-driven models with appropriate transition systems can
produce high-quality deep dependency analysis, comparable to more complex grammar-driven

∗ The authors are with the Institute of Computer Science and Technology, the MOE Key Laboratory of
Computational Linguistics, Peking University, Beijing 100871, China.
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Abstract

We study the generalization of maximum span-
ning tree dependency parsing to maximum
acyclic subgraphs. Because the underlying op-
timization problem is intractable even under
an arc-factored model, we consider the restric-
tion to noncrossing dependency graphs. Our
main contribution is a cubic-time exact infer-
ence algorithm for this class. We extend this al-
gorithm into a practical parser and evaluate its
performance on four linguistic data sets used in
semantic dependency parsing. We also explore
a generalization of our parsing framework to
dependency graphs with pagenumber at most k
and show that the resulting optimization prob-
lem is NP-hard for k � 2.

1 Introduction

Dependency parsers provide lightweight represen-
tations for the syntactic and the semantic structure
of natural language. Syntactic dependency parsing
(Kübler et al., 2009) has been an extremely active
research area for the last decade or so, resulting in
accurate and efficient parsers for a wide range of
languages. Semantic dependency parsing has only
recently been addressed in the literature (Oepen et
al., 2014; Oepen et al., 2015; Du et al., 2015a).

Syntactic dependency parsing has been formal-
ized as the search for maximum spanning trees in
weighted digraphs (McDonald et al., 2005b). For
semantic dependency parsing, where target represen-
tations are not necessarily tree-shaped, it is natural to
generalize this view to maximum acyclic subgraphs,
with or without the additional requirement of weak
connectivity (Schluter, 2014).

While a maximum spanning tree of a weighted
digraph can be found in polynomial time (Tarjan,
1977), computing a maximum acyclic subgraph is
intractable, and even good approximate solutions are
hard to find (Guruswami et al., 2011). In this pa-
per we therefore address maximum acyclic subgraph
parsing under the restriction that the subgraph should
be noncrossing, which informally means that its arcs
can be drawn on the half-plane above the sentence in
such a way that no two arcs cross (and without chang-
ing the order of the words). The main contribution
of this paper is an algorithm that finds a maximum
noncrossing acyclic subgraph of a (vertex-ordered)
weighted digraph on n vertices in time O.n3/.

After giving some background (Section 2) we in-
troduce the noncrossing condition, compare it to
other structural constraints from the literature, and
study its empirical coverage (Section 3). We then
present our parsing algorithm (Section 4). To turn
this algorithm into a practical parser, we combine it
with an off-the-shelf feature model and online train-
ing (Section 5); the source code of our system is re-
leased with this paper.1 We evaluate the performance
of our parser on four linguistic data sets: those used
in the recent SemEval task on semantic dependency
parsing (Oepen et al., 2015), and the dependency
graphs extracted from CCGbank (Hockenmaier and
Steedman, 2007). Finally, we explore the limits of
our approach by showing that finding the maximum
acyclic subgraph under a natural generalization of the
noncrossing condition, pagenumber at most k, is NP-
hard for k � 2 (Section 6). We conclude the paper
by discussing related and future work (Section 7).

1https://github.com/liu-nlp/gamma
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Abstract

Parsing sentences to linguistically-
expressive semantic representations is a
key goal of Natural Language Process-
ing. Yet statistical parsing has focussed
almost exclusively on bilexical depen-
dencies or domain-specific logical forms.
We propose a neural encoder-decoder
transition-based parser which is the first
full-coverage semantic graph parser for
Minimal Recursion Semantics (MRS).
The model architecture uses stack-based
embedding features, predicting graphs
jointly with unlexicalized predicates
and their token alignments. Our parser
is more accurate than attention-based
baselines on MRS, and on an additional
Abstract Meaning Representation (AMR)
benchmark, and GPU batch processing
makes it an order of magnitude faster
than a high-precision grammar-based
parser. Further, the 86.69% Smatch score
of our MRS parser is higher than the
upper-bound on AMR parsing, making
MRS an attractive choice as a semantic
representation.

1 Introduction

An important goal of Natural Language Under-
standing (NLU) is to parse sentences to structured,
interpretable meaning representations that can be
used for query execution, inference and reasoning.
Recently end-to-end models have outperformed
traditional pipeline approaches, predicting syntac-
tic or semantic structure as intermediate steps, on
NLU tasks such as sentiment analysis and seman-
tic relatedness (Le and Mikolov, 2014; Kiros et al.,
2015), question answering (Hermann et al., 2015)
and textual entailment (Rocktäschel et al., 2015).

However the linguistic structure used in applica-
tions has predominantly been shallow, restricted
to bilexical dependencies or trees.

In this paper we focus on robust parsing into
linguistically deep representations. The main rep-
resentation that we use is Minimal Recursion Se-
mantics (MRS) (Copestake et al., 1995, 2005),
which serves as the semantic representation of the
English Resource Grammar (ERG) (Flickinger,
2000). Existing parsers for full MRS (as op-
posed to bilexical semantic graphs derived from,
but simplifying MRS) are grammar-based, per-
forming disambiguation with a maximum entropy
model (Toutanova et al., 2005; Zhang et al., 2007);
this approach has high precision but incomplete
coverage.

Our main contribution is to develop a fast and
robust parser for full MRS-based semantic graphs.
We exploit the power of global conditioning en-
abled by deep learning to predict linguistically
deep graphs incrementally. The model does not
have access to the underlying ERG or syntac-
tic structures from which the MRS analyses were
originally derived. We develop parsers for two
graph-based conversions of MRS, Elementary De-
pendency Structure (EDS) (Oepen and Lønning,
2006) and Dependency MRS (DMRS) (Copes-
take, 2009), of which the latter is inter-convertible
with MRS.

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a graph-based semantic
representation that shares the goals of MRS. Aside
from differences in the choice of which linguis-
tic phenomena are annotated, MRS is a compo-
sitional representation explicitly coupled with the
syntactic structure of the sentence, while AMR
does not assume compositionality or alignment
with the sentence structure. Recently a number
of AMR parsers have been developed (Flanigan
et al., 2014; Wang et al., 2015b; Artzi et al., 2015;
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Abstract

We present a deep neural architecture that
parses sentences into three semantic de-
pendency graph formalisms. By using ef-
ficient, nearly arc-factored inference and
a bidirectional-LSTM composed with a
multi-layer perceptron, our base system is
able to significantly improve the state of
the art for semantic dependency parsing,
without using hand-engineered features or
syntax. We then explore two multitask
learning approaches—one that shares pa-
rameters across formalisms, and one that
uses higher-order structures to predict the
graphs jointly. We find that both ap-
proaches improve performance across for-
malisms on average, achieving a new state
of the art. Our code is open-source and
available at https://github.com/
Noahs-ARK/NeurboParser.

1 Introduction

Labeled directed graphs are a natural and flexi-
ble representation for semantics (Copestake et al.,
2005; Baker et al., 2007; Surdeanu et al., 2008;
Banarescu et al., 2013, inter alia). Their generality
over trees, for instance, allows them to represent
relational semantics while handling phenomena
like coreference and coordination. Even syntactic
formalisms are moving toward graphs (de Marn-
effe et al., 2014). However, full semantic graphs
can be expensive to annotate, and efforts are frag-
mented across competing semantic theories, lead-
ing to a limited number of annotations in any one
formalism. This makes learning to parse more dif-
ficult, especially for powerful but data-hungry ma-
chine learning techniques like neural networks.

In this work, we hypothesize that the overlap
among theories and their corresponding represen-
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Figure 1: An example sentence annotated with the
three semantic formalisms of the broad-coverage
semantic dependency parsing shared tasks.

tations can be exploited using multitask learn-
ing (Caruana, 1997), allowing us to learn from
more data. We use the 2015 SemEval shared task
on Broad-Coverage Semantic Dependency Pars-
ing (SDP; Oepen et al., 2015) as our testbed.
The shared task provides an English-language cor-
pus with parallel annotations for three semantic
graph representations, described in §2. Though
the shared task was designed in part to encourage
comparison between the formalisms, we are the
first to treat SDP as a multitask learning problem.

As a strong baseline, we introduce a new sys-
tem that parses each formalism separately (§3).
It uses a bidirectional-LSTM composed with a
multi-layer perceptron to score arcs and predi-
cates, and has efficient, nearly arc-factored infer-
ence. Experiments show it significantly improves
on state-of-the-art methods (§3.4).

We then present two multitask extensions (§4.2

2037
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Abstract

We model a dependency graph as a book,
a particular kind of topological space, for
semantic dependency parsing. The spine
of the book is made up of a sequence of
words, and each page contains a subset
of noncrossing arcs. To build a semantic
graph for a given sentence, we design new
Maximum Subgraph algorithms to gener-
ate noncrossing graphs on each page, and
a Lagrangian Relaxation-based algorithm
to combine pages into a book. Experi-
ments demonstrate the effectiveness of the
book embedding framework across a wide
range of conditions. Our parser obtains
comparable results with a state-of-the-art
transition-based parser.

1 Introduction

Dependency analysis provides a lightweight and
effective way to encode syntactic and semantic
information of natural language sentences. One
of its branches, syntactic dependency parsing
(Kübler et al., 2009) has been an extremely ac-
tive research area, with high-performance parsers
being built and applied for practical use of NLP.
Semantic dependency parsing, however, has only
been addressed in the literature recently (Oepen
et al., 2014, 2015; Du et al., 2015; Zhang et al.,
2016; Cao et al., 2017).

Semantic dependency parsing employs a graph-
structured semantic representation. On the one
hand, it is flexible enough to provide analysis
for various semantic phenomena (Ivanova et al.,
2012). This very flexibility, on the other hand,
brings along new challenges for designing pars-
ing algorithms. For graph-based parsing, no previ-
ously defined Maximum Subgraph algorithm has
simultaneously a high coverage and a polynomial

complexity to low degrees. For transition-based
parsing, no principled decoding algorithms, e.g.
dynamic programming (DP), has been developed
for existing transition systems.

In this paper, we borrow the idea of book em-
bedding from graph theory, and propose a novel
framework to build parsers for flexible depen-
dency representations. In graph theory, a book is
a kind of topological space that consists of a spine
and a collection of one or more half-planes. In
our “book model” of semantic dependency graph,
the spine is made up of a sequence of words, and
each half-plane contains a subset of dependency
arcs. In particular, the arcs on each page com-
pose a noncrossing dependency graph, a.k.a. pla-
nar graph. Though a dependency graph in general
is very flexible, its subgraph on each page is rather
regular. Under the new perspective, semantic de-
pendency parsing can be cast as a two-step task:
Each page is first analyzed separately, and then all
the pages are bound coherently.

Our work is motivated by the extant low-degree
polynomial time algorithm for first-order Max-
imum Subgraph parsing for noncrossing depen-
dency graphs (Kuhlmann and Jonsson, 2015). We
enhance existing work with new exact second- and
approximate higher-order algorithms. Our algo-
rithms facilitate building with high accuracy the
partial semantic dependency graphs on each page.
To produce a full semantic analysis, we also need
to integrate partial graphs on all pages into one co-
herent book. To this end, we formulate the prob-
lem as a combinatorial optimization problem, and
propose a Lagrangian Relaxation-based algorithm
for solutions.

We implement a practical parser in the
new framework with a statistical disambiguation
model. We evaluate this parser on four data sets:
those used in SemEval 2014 Task 8 (Oepen et al.,
2014), and the dependency graphs extracted from
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Abstract
While syntactic dependency annotations
concentrate on the surface or functional
structure of a sentence, semantic depen-
dency annotations aim to capture between-
word relationships that are more closely
related to the meaning of a sentence, using
graph-structured representations. We ex-
tend the LSTM-based syntactic parser of
Dozat and Manning (2017) to train on and
generate these graph structures. The re-
sulting system on its own achieves state-
of-the-art performance, beating the pre-
vious, substantially more complex state-
of-the-art system by 0.6% labeled F1.
Adding linguistically richer input repre-
sentations pushes the margin even higher,
allowing us to beat it by 1.9% labeled F1.

1 Introduction

Syntactic dependency parsing is arguably the most
popular method for automatically extracting the
low-level relationships between words in a sen-
tence for use in natural language understanding
tasks. However, typical syntactic dependency
frameworks are limited in the number and types of
relationships that can be captured. For example, in
the sentence Mary wants to buy a book, the word
Mary is the subject of both want and buy—either
or both relationships could be useful in a down-
stream task, but a tree-structured representation of
this sentence (as in Figure 1a) can only represent
one of them.1

The 2014 SemEval shared task on Broad-
Coverage Semantic Dependency Parsing (Oepen
et al., 2014) introduced three new dependency rep-
resentations that do away with the assumption of

1Though efforts have been made to address this limitation;
seeDe Marneffe et al. (2006); Nivre et al. (2016); Schuster
and Manning (2016); Candito et al. (2017) for examples.

strict tree structure in favor of a richer graph-
structured representation, allowing them to cap-
ture more linguistic information about a sentence.
This opens up the possibility of providing more
useful information to downstream tasks (Reddy
et al., 2017; Schuster et al., 2017), but increases
the difficulty of automatically extracting that in-
formation, since most previous work on parsing
has focused on generating trees.

Dozat and Manning (2017) developed a suc-
cessful syntactic dependency parsing system with
few task-specific sources of complexity. In this
paper, we extend that system so that it can train
on and produce the graph-structured data of se-
mantic dependency schemes. We also consider
straightforward extensions of the system that are
likely to increase performance over the straightfor-
ward baseline, including giving the system access
to lemma embeddings and building in a character-
level word embedding model. Finally, we briefly
examine some of the design choices of that archi-
tecture, in order to assess which components are
necessary for achieving the highest accuracy and
which have little impact on final performance.

2 Background

2.1 Semantic dependencies

The 2014 SemEval (Oepen et al., 2014, 2015)
shared task introduced three new semantic de-
pendency formalisms, applied to the Penn Tree-
bank (shown in Figure 1, compared to Universal
Dependencies (Nivre et al., 2016)): DELPH-IN
MRS, or DM (Flickinger et al., 2012; Oepen and
Lønning, 2006); Predicate-Argument Structures,
or PAS (Miyao and Tsujii, 2004); and Prague Se-
mantic Dependencies, or PSD (Hajic et al., 2012).
Whereas syntactic dependencies generally anno-
tate functional relationships between words—such
as subject and object—semantic dependencies aim

9
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Multitask Parsing Across Semantic Representations

Daniel Hershcovich1,2 Omri Abend2

1The Edmond and Lily Safra Center for Brain Sciences
2School of Computer Science and Engineering

Hebrew University of Jerusalem
{danielh,oabend,arir}@cs.huji.ac.il
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Abstract

The ability to consolidate information of
different types is at the core of intelli-
gence, and has tremendous practical value
in allowing learning for one task to benefit
from generalizations learned for others. In
this paper we tackle the challenging task of
improving semantic parsing performance,
taking UCCA parsing as a test case, and
AMR, SDP and Universal Dependencies
(UD) parsing as auxiliary tasks. We ex-
periment on three languages, using a uni-
form transition-based system and learning
architecture for all parsing tasks. Despite
notable conceptual, formal and domain
differences, we show that multitask learn-
ing significantly improves UCCA parsing
in both in-domain and out-of-domain set-
tings. Our code is publicly available.1

1 Introduction

Semantic parsing has arguably yet to reach its
full potential in terms of its contribution to down-
stream linguistic tasks, partially due to the limited
amount of semantically annotated training data.
This shortage is more pronounced in languages
other than English, and less researched domains.

Indeed, recent work in semantic parsing has tar-
geted, among others, Abstract Meaning Represen-
tation (AMR; Banarescu et al., 2013), bilexical Se-
mantic Dependencies (SDP; Oepen et al., 2016)
and Universal Conceptual Cognitive Annotation
(UCCA; Abend and Rappoport, 2013). While
these schemes are formally different and focus on
different distinctions, much of their semantic con-
tent is shared (Abend and Rappoport, 2017).

Multitask learning (MTL; Caruana, 1997) al-
lows exploiting the overlap between tasks to ef-

1http://github.com/danielhers/tupa

fectively extend the training data, and has greatly
advanced with neural networks and representation
learning (see §2). We build on these ideas and pro-
pose a general transition-based DAG parser, able
to parse UCCA, AMR, SDP and UD (Nivre et al.,
2016). We train the parser using MTL to obtain
significant improvements on UCCA parsing over
single-task training in (1) in-domain and (2) out-
of-domain settings in English; (3) an in-domain
setting in German; and (4) an in-domain setting in
French, where training data is scarce.

The novelty of this work is in proposing a gen-
eral parsing and learning architecture, able to ac-
commodate such widely different parsing tasks,
and in leveraging it to show benefits from learn-
ing them jointly.

2 Related Work

MTL has been used over the years for NLP tasks
with varying degrees of similarity, examples in-
cluding joint classification of different arguments
in semantic role labeling (Toutanova et al., 2005),
and joint parsing and named entity recognition
(Finkel and Manning, 2009). Similar ideas, of
parameter sharing across models trained with dif-
ferent datasets, can be found in studies of do-
main adaptation (Blitzer et al., 2006; Daume III,
2007; Ziser and Reichart, 2017). For parsing,
domain adaptation has been applied successfully
in parser combination and co-training (McClosky
et al., 2010; Baucom et al., 2013).

Neural MTL has mostly been effective in tack-
ling formally similar tasks (Søgaard and Gold-
berg, 2016), including multilingual syntactic de-
pendency parsing (Ammar et al., 2016; Guo et al.,
2016), as well as multilingual (Duong et al., 2017),
and cross-domain semantic parsing (Herzig and
Berant, 2017; Fan et al., 2017).

Sharing parameters with a low-level task has
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Abstract

We propose a novel approach to semantic de-
pendency parsing (SDP) by casting the task as
an instance of multi-lingual machine transla-
tion, where each semantic representation is a
different foreign dialect. To that end, we first
generalize syntactic linearization techniques to
account for the richer semantic dependency
graph structure. Following, we design a neural
sequence-to-sequence framework which can
effectively recover our graph linearizations,
performing almost on-par with previous SDP
state-of-the-art while requiring less parallel
training annotations. Beyond SDP, our lin-
earization technique opens the door to integra-
tion of graph-based semantic representations
as features in neural models for downstream
applications.

1 Introduction

Many sentence-level representations were devel-
oped with the goal of capturing the sentence’s
proposition structure and making it accessible for
downstream applications (Montague, 1973; Car-
reras and Màrquez, 2005; Banarescu et al., 2013;
Abend and Rappoport, 2013). See Abend and
Rappoport (2017), for a recent survey.

While syntactic grammars (Marcus et al., 1993;
Nivre, 2005) induce a rooted tree structure over
the sentence by connecting verbal predicates to
their arguments, these semantic representations
often take the form of the more general labeled
graph structure, and aim to capture a wider no-
tion of propositions (e.g, nominalizations, adjec-
tivals, or appositives). In particular, we will
focus on the three graph-based semantic repre-
sentations collected in the Broad-Coverage Se-
mantic Dependency Parsing SemEval shared task
(SDP) (Oepen et al., 2015): (1) DELPH-IN Bi-

∗Work performed while at Bar-Ilan University.

Lexical Dependencies (DM) (Flickinger, 2000),1

(2) Enju Predicate-Argument Structures (PAS)
(Miyao et al., 2014), and (3) Prague Semantic
Dependencies (PSD) (Hajic et al., 2012). These
annotations have garnered recent attention (e.g.,
(Buys and Blunsom, 2017; Peng et al., 2017a)),
and were consistently annotated in parallel on over
more than 30K sentences of the Wall Street Jour-
nal corpus (Charniak et al., 2000).

In this work we take a novel approach to graph
parsing, casting sentence-level semantic parsing as
a multilingual machine-translation task (MT). We
deviate from current graph-parsing approaches to
SDP (Peng et al., 2017a) by treating the differ-
ent semantic formalisms as foreign target dialects,
while having English a as a common source lan-
guage (Section 3). Subsequently, we devise a neu-
ral MT sequence-to-sequence framework that is
suited for the task.

In order to apply sequence-to-sequence mod-
els for structured prediction, a linearization func-
tion is required to interpret the model’s sequen-
tial input and output. Initial work on structured
prediction sequence-to-sequence modeling has fo-
cused on tree structures (Vinyals et al., 2015; Aha-
roni and Goldberg, 2017), as these are quite easy
to linearize using the bracketed representation (as
employed in the Penn TreeBank (Marcus et al.,
1993)). Following, various efforts were made
to port the attractiveness of sequence-to-sequence
modeling to the more general graph structure of
semantic representations, such as AMR or MRS
(Peng et al., 2017b; Barzdins and Gosko, 2016;
Konstas et al., 2017; Buys and Blunsom, 2017).
However, to the best of our knowledge, all such
current methods actually sidestep the challenge of
graph linearization – they reduce the input graph
to a tree using lossy heuristics, which are specifi-

1 DM is automatically derived from Minimal Recursion
Semantics (MRS) (Copestake et al., 1999).

11



Even Bigger Conferences (ACL 2019)

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2420–2430
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

2420

Multi-Task Semantic Dependency Parsing with Policy Gradient for
Learning Easy-First Strategies

Shuhei Kurita
Center for Advanced Intelligence Project

RIKEN
Tokyo, Japan

shuhei.kurita@riken.jp

Anders Søgaard
Department of Computer Science

University of Copenhagen
Copenhagen, Denmark
soegaard@di.ku.dk

Abstract

In Semantic Dependency Parsing (SDP), se-
mantic relations form directed acyclic graphs,
rather than trees. We propose a new iterative
predicate selection (IPS) algorithm for SDP.
Our IPS algorithm combines the graph-based
and transition-based parsing approaches in or-
der to handle multiple semantic head words.
We train the IPS model using a combination
of multi-task learning and task-specific pol-
icy gradient training. Trained this way, IPS
achieves a new state of the art on the SemEval
2015 Task 18 datasets. Furthermore, we ob-
serve that policy gradient training learns an
easy-first strategy.

1 Introduction

Dependency parsers assign syntactic structures to
sentences in the form of trees. Semantic depen-
dency parsing (SDP), first introduced in the Se-
mEval 2014 shared task (Oepen et al., 2014), in
contrast, is the task of assigning semantic struc-
tures in the form of directed acyclic graphs to sen-
tences. SDP graphs consist of binary semantic re-
lations, connecting semantic predicates and their
arguments. A notable feature of SDP is that words
can be the semantic arguments of multiple predi-
cates. For example, in the English sentence: “The
man went back and spoke to the desk clerk” – the
word “man” is the subject of the two predicates
“went back” and “spoke”. SDP formalisms typi-
cally express this by two directed arcs, from the
two predicates to the argument. This yields a di-
rected acyclic graph that expresses various rela-
tions among words. However, the fact that SDP
structures are directed acyclic graphs means that
we cannot apply standard dependency parsing al-
gorithms to SDP.

Standard dependency parsing algorithms are of-
ten said to come in two flavors: transition-based

The man went back and spoke to the desk clerk.

a) DM

The man went back and spoke to the desk clerk.

b) PAS

The man went back and spoke to the desk clerk.

c) PSD ROOT ROOT

ROOT

ROOT

BV ARG1

ARG1
AND_C

LOC
ARG1

ARG2
BV

COMPOUND

DET_ARG1 VERB_ARG1

VERB_ARG1

ADJ_ARG1

COORD_ARG1

COORD_ARG2 PREP_ARG1

PREP_ARG2

DET_ARG1

NOUN_ARG1

ACT DIR3

CONJ.MEMBER

RSTR

ADDR

CONJ.MEMBER

Figure 1: Semantic dependency parsing arcs of DM,
PAS and PSD formalisms.

parsers score transitions between states, and grad-
ually build up dependency graphs on the side.
Graph-based parsers, in contrast, score all candi-
date edges directly and apply tree decoding algo-
rithms for the resulting score table. The two types
of parsing algorithms have different advantages
(McDonald and Nivre, 2007), with transition-
based parsers often having more problems with er-
ror propagation and, as a result, with long-distance
dependencies. This paper presents a compromise
between transition-based and graph-based parsing,
called iterative predicate selection (IPS) – inspired
by head selection algorithms for dependency pars-
ing (Zhang et al., 2017) – and show that error
propagation, for this algorithm, can be reduced
by a combination of multi-task and reinforcement
learning.

Multi-task learning is motivated by the fact that
there are several linguistic formalisms for SDP.
Fig. 1 shows the three formalisms used in the
shared task. The DELPH-IN MRS (DM) for-
malism derives from DeepBank (Flickinger et al.,
2012) and minimal recursion semantics (Copes-
take et al., 2005). Predicate-Argument Structure
(PAS) is a formalism based on the Enju HPSG
parser (Miyao et al., 2004) and is generally con-
sidered slightly more syntactic of nature than the
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Abstract

Most semantic parsers that map sentences to
graph-based meaning representations are hand-
designed for specific graphbanks. We present
a compositional neural semantic parser which
achieves, for the first time, competitive accura-
cies across a diverse range of graphbanks. In-
corporating BERT embeddings and multi-task
learning improves the accuracy further, setting
new states of the art on DM, PAS, PSD, AMR
2015 and EDS.

1 Introduction

Over the past few years, a wide variety of semantic
graphbanks have become available. Although these
corpora all pair natural-language sentences with
graph-based semantic representations, they differ
greatly in the design of these graphs (Kuhlmann
and Oepen, 2016). Some, in particular the DM,
PAS, and PSD corpora of the SemEval shared task
on Semantic Dependency Parsing (Oepen et al.,
2015), use the tokens of the sentence as nodes and
connect them with semantic relations. By contrast,
the AMRBank (Banarescu et al., 2013) represents
the meaning of each word using a nontrivial con-
cept graph; the EDS graphbank (Flickinger et al.,
2017) encodes MRS representations (Copestake
et al., 2005) as graphs with a many-to-many re-
lation between tokens and nodes. In EDS, graph
nodes are explicitly aligned with the tokens; in
AMR, the alignments are implicit. The graphbanks
also exhibit structural differences in their modeling
of e.g. coordination or copula.

Because of these differences in annotation
schemes, the best performing semantic parsers are
typically designed for one or very few specific
graphbanks. For instance, the currently best sys-
tem for DM, PAS, and PSD (Dozat and Manning,

∗Equal contribution

2018) assumes dependency graphs and cannot be
directly applied to EDS or AMR. Conversely, top
AMR parsers (Lyu and Titov, 2018) invest heavily
into identifying AMR-specific alignments and con-
cepts, which may not be useful in other graphbanks.
Hershcovich et al. (2018) parse across different se-
mantic graphbanks (UCCA, DM, AMR), but focus
on UCCA and do poorly on DM. The system of
Buys and Blunsom (2017) set a state of the art on
EDS at the time, but does poorly on AMR.

In this paper, we present a single semantic parser
that does very well across all of DM, PAS, PSD,
EDS and AMR (2015 and 2017). Our system is
based on the compositional neural AMR parser of
Groschwitz et al. (2018), which represents each
graph with its compositional tree structure and
learns to predict it through neural dependency pars-
ing and supertagging. We show how to heuristi-
cally compute the latent compositional structures
of the graphs of DM, PAS, PSD, and EDS. This
base parser already performs near the state of the
art across all six graphbanks. We improve it fur-
ther by using pretrained BERT embeddings (Devlin
et al., 2019) and multi-task learning. With this, we
set new states of the art on DM, PAS, PSD, AMR
2015, as well as (among systems that do not use
specialized knowledge about the corpus) on EDS.

2 Semantic parsing with the AM algebra

The Apply-Modify (AM) Algebra (Groschwitz
et al., 2017; Groschwitz, 2019) builds graphs from
smaller graph fragments called as-graphs. Fig. 1b
shows some as-graphs from which the AMR in
Fig. 1a can be constructed. Take for example the
graphGwant. Some of its nodes are marked with red
sources, here S and O. These represent ‘argument
slots’ to be filled. The O-source in Gwant is anno-
tated with type [S], which will be explained below.
Further, in each as-graph, one node is marked as a
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Abstract

We unify different broad-coverage semantic
parsing tasks under a transduction paradigm,
and propose an attention-based neural frame-
work that incrementally builds a meaning rep-
resentation via a sequence of semantic rela-
tions. By leveraging multiple attention mecha-
nisms, the transducer can be effectively trained
without relying on a pre-trained aligner. Ex-
periments conducted on three separate broad-
coverage semantic parsing tasks – AMR, SDP
and UCCA – demonstrate that our attention-
based neural transducer improves the state of
the art on both AMR and UCCA, and is com-
petitive with the state of the art on SDP.

1 Introduction

Broad-coverage semantic parsing aims at map-
ping any natural language text, regardless of its
domain, genre, or even the language itself, into
a general-purpose meaning representation. As a
long-standing topic of interest in computational
linguistics, broad-coverage semantic parsing has
targeted a number of meaning representation
frameworks, including CCG (Steedman, 1996,
2001), DRS (Kamp and Reyle, 1993; Bos, 2008),
AMR (Banarescu et al., 2013), UCCA (Abend
and Rappoport, 2013), SDP (Oepen et al., 2014,
2015), and UDS (White et al., 2016).1 Each of
these frameworks has their specific formal and
linguistic assumptions. Such framework-specific
“balkanization” results in a variety of framework-
specific parsing approaches, and the state-of-the-
art semantic parser for one framework is not al-
ways applicable to another. For instance, the state-
of-the-art approaches to SDP parsing (Dozat and

1Abbreviations respectively denote: Combinatory Cat-
egorical Grammar, Discourse Representation Theory, Ab-
stract Meaning Representation, Universal Conceptual Cog-
nitive Annotation, Semantic Dependency Parsing, and Uni-
versal Decompositional Semantics.

Manning, 2018; Peng et al., 2017a) are not directly
transferable to AMR and UCCA because of the
lack of explicit alignments between tokens in the
sentence and nodes in the semantic graph.

While transition-based approaches are adapt-
able to different broad-coverage semantic parsing
tasks (Wang et al., 2018; Hershcovich et al., 2018;
Damonte et al., 2017), when it comes to represen-
tations such as AMR whose nodes are unanchored
to tokens in the sentence, a pre-trained aligner
has to be used to produce the reference transi-
tion sequences (Wang et al., 2015; Damonte et al.,
2017; Peng et al., 2017b). In contrast, there are
attempts to develop attention-based approaches in
a graph-based parsing paradigm (Dozat and Man-
ning, 2018; Zhang et al., 2019), but they lack pars-
ing incrementality, which is advocated in terms
of computational efficiency and cognitive model-
ing (Nivre, 2004; Huang and Sagae, 2010).

In this paper, we approach different broad-
coverage semantic parsing tasks under a uni-
fied framework of transduction. We propose an
attention-based neural transducer that extends the
two-stage semantic parser of Zhang et al. (2019)
to directly transduce input text into a meaning
representation in one stage. This transducer has
properties of both transition-based approaches and
graph-based approaches: on the one hand, it
builds a meaning representation incrementally via
a sequence of semantic relations, similar to a
transition-based parser; on the other hand, it lever-
ages multiple attention mechanisms used in recent
graph-based parsers, thereby removing the need
for pre-trained aligners.

Requiring only minor task-specific adaptations,
we apply this framework to three separate broad-
coverage semantic parsing tasks: AMR, SDP, and
UCCA. Experimental results show that our neural
transducer outperforms the state-of-the-art parsers
on AMR (77.0% F1 on LDC2017T10 and 71.3%
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Abstract

Transition-based parsers implemented with
Pointer Networks have become the new state
of the art in dependency parsing, excelling
in producing labelled syntactic trees and out-
performing graph-based models in this task.
In order to further test the capabilities of
these powerful neural networks on a harder
NLP problem, we propose a transition system
that, thanks to Pointer Networks, can straight-
forwardly produce labelled directed acyclic
graphs and perform semantic dependency pars-
ing. In addition, we enhance our approach
with deep contextualized word embeddings
extracted from BERT. The resulting system
not only outperforms all existing transition-
based models, but also matches the best fully-
supervised accuracy to date on the SemEval
2015 Task 18 English datasets among previous
state-of-the-art graph-based parsers.

1 Introduction

In dependency parsing, the syntactic structure of a
sentence is represented by means of a labelled tree,
where each word is forced to be attached exclu-
sively to another that acts as its head. In contrast,
semantic dependency parsing (SDP) (Oepen et al.,
2014) aims to represent binary predicate-argument
relations between words of a sentence, which re-
quires producing a labelled directed acyclic graph
(DAG): not only semantic predicates can have mul-
tiple or zero arguments, but words from the sen-
tence can be attached as arguments to more than
one head word (predicate), or they can be outside
the SDP graph (being neither a predicate nor an
argument) as shown in the examples in Figure 1.
Since existing dependency parsers cannot be di-
rectly applied, most SDP research has focused on
adapting them to deal with the absence of single-
head and connectedness constraints and to produce
an SDP graph instead.

Figure 1: Sentence from the SemEval 2015 Task 18 de-
velopment set parsed with semantic dependencies fol-
lowing the DM, PAS and PSD formalisms.

As in dependency parsing, we can find two main
families of approaches to efficiently generate accu-
rate SDP graphs. On the one hand, graph-based
algorithms have drawn more attention since adapt-
ing them to this task is relatively straightforward.
In particular, these globally optimized methods in-
dependently score arcs (or sets of them) and then
search for a high-scoring graph by combining these
scores. From one of the first graph-based DAG
parsers proposed by McDonald and Pereira (2006)
to the current state-of-the-art models (Wang et al.,
2019; He and Choi, 2019), different graph-based
SDP approaches have been presented, providing ac-
curacies above their main competitors: transition-
based DAG algorithms.

A transition-based parser generates a sequence
of actions to incrementally build a valid graph (usu-
ally from left to right). This is typically done by
local, greedy prediction and can efficiently parse a
sentence in a linear or quadratic number of actions
(transitions); however, the lack of global inference
makes them more prone to suffer from error propa-
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Abstract

Semantic dependency parsing, which aims to
find rich bi-lexical relationships, allows words
to have multiple dependency heads, resulting
in graph-structured representations. We pro-
pose an approach to semi-supervised learning
of semantic dependency parsers based on the
CRF autoencoder framework. Our encoder is
a discriminative neural semantic dependency
parser that predicts the latent parse graph of
the input sentence. Our decoder is a gener-
ative neural model that reconstructs the input
sentence conditioned on the latent parse graph.
Our model is arc-factored and therefore pars-
ing and learning are both tractable. Experi-
ments show our model achieves significant and
consistent improvement over the supervised
baseline.

1 Introduction

Semantic dependency parsing (SDP) is a task aim-
ing at discovering sentence-internal linguistic in-
formation. The focus of SDP is the identification
of predicate-argument relationships for all content
words inside a sentence (Oepen et al., 2014, 2015).
Compared with syntactic dependencies, semantic
dependencies are more general, allowing a word
to be either unattached or the argument of multi-
ple predicates. The set of semantic dependencies
within a sentence form a directed acyclic graph
(DAG), distinguishing SDP from syntactic depen-
dency parsing tasks, where dependencies are usu-
ally tree-structured. Extraction of such high-level
structured semantic information potentially ben-
efits downstream NLP tasks (Reddy et al., 2017;
Schuster et al., 2017).

Several supervised SDP models are proposed
in the recent years by modifying syntactic depen-
dency parsers. Their parsing mechanisms are either
transition-based (Kanerva et al., 2015; Wang et al.,

∗Corresponding author.

2018) or graph-based (Martins and Almeida, 2014;
Peng et al., 2017; Dozat and Manning, 2018; Wang
et al., 2019).

One limitation of supervised SDP is that labeled
SDP data resources are limited in scale and diver-
sity. Due to the rich relationships in SDP, the anno-
tation of semantic dependency graphs is expensive
and difficult, calling for professional linguists to de-
sign rules and highly skilled annotators to annotate
sentences. This limitation becomes more severe
with the rise of deep learning, because neural ap-
proaches are more data-hungry and susceptible to
over-fitting when lacking training data. To allevi-
ate this limitation, we investigate semi-supervised
SDP capable of learning from both labeled and
unlabeled data.

While a lot of work has been done on super-
vised SDP, the research of unsupervised and semi-
supervised SDP is still lacking. Since parsing re-
sults of semantic dependencies are DAGs with-
out the tree-shape restriction, most existing suc-
cessful unsupervised (Klein and Manning, 2004;
I. Spitkovsky et al., 2010; Jiang et al., 2016; Cai
et al., 2017) and semi-supervised (Koo et al., 2008;
Druck et al., 2009; Suzuki et al., 2009; Corro and
Titov, 2019) learning models for syntactic depen-
dency parsing cannot be applied to SDP directly
and it would be non-trivial to extend these mod-
els for SDP. There also exist several unsupervised
(Poon and Domingos, 2009; Titov and Klementiev,
2011) and semi-supervised (Das and Smith, 2011;
Kočiskỳ et al., 2016; Yin et al., 2018) methods for
semantic parsing, but these models are designed
for semantic representations different from depen-
dency graphs, making their adaptation to SDP dif-
ficult.

In this work, we propose an end-to-end neural
semi-supervised model leveraging both labeled and
unlabeled data to learn a dependency graph parser.
Our model employs the framework of Conditional
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Abstract

We propose variable-in-situ logico-semantic
graphs to bridge the gap between semantic
graph and logical form parsing. The new
type of graph-based meaning representation
allows us to include analysis for scope-related
phenomena, such as quantification, negation
and modality, in a way that is consistent
with the state-of-the-art underspecification ap-
proach. Moreover, the well-formedness of
such a graph is clear, since model-theoretic in-
terpretation is available. We demonstrate the
effectiveness of this new perspective by de-
veloping a new state-of-the-art semantic parser
for Minimal Recursion Semantics. At the core
of this parser is a novel neural graph rewriting
system which combines the strengths of Hy-
peredge Replacement Grammar, a knowledge-
intensive model, and Graph Neural Networks,
a data-intensive model. Our parser achieves an
accuracy of 92.39% in terms of ELEMENTARY
DEPENDENCY MATCH, which is a 2.88 point
improvement over the best data-driven model
in the literature. The output of our parser is
highly coherent: at least 91% graphs are valid,
in that they allow at least one sound scope-
resolved logical form.

1 Introduction

Graphs have recently become popular as a strat-
egy for encoding sentence-level semantics, and
related data-driven parsing techniques have been
making rapid progress. The primary component of
popular semantic graphs, e.g. Elementary Depen-
dency Structure (EDS; Oepen and Lønning, 2006)
and Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013), is the predicate–argument
structure, with the predicate being a concept that
takes a number of arguments. Though expressive
for many applications, this predicative core does
not fully match the need for logical forms that used
to stand in the central area of semantic parsing.

Partly due to the lack of model-theoretic seman-
tics, it is rather difficult to add scope information
related to quantification, negation and modality to
a graph. Partly due to the lack of logical deduction
engines, it is rather difficult to directly perform au-
tomated reasoning over graphs.

This paper proposes to express logical forms
with variable-in-situ graphs for the ongoing ad-
vances in graph-centric formalisms, algorithms
and neural architectures. This leads us to a novel
neural graph rewriting system that combines the
strengths of Hyperedge Replacement Grammar
(HRG; Drewes et al., 1997) and Graph Neural Net-
works (Song et al., 2018a). On the one hand, it
can be viewed as an improved graph embedding
model that explicitly explores recursive structures
that are defined by an HRG. On the other hand, it
can be viewed as an enhanced graph grammar with
which all nodes involved in derivations of graphs
are assigned vector-based distributed encodings.

Based on our neural graph rewriting system, we
develop a new parser for Minimal Recursion Se-
mantics (MRS; Copestake et al., 2005). By means
of the DeepBank (Flickinger et al., 2012) data, our
parser achieves an accuracy of 92.39% in terms of
ELEMENTARY DEPENDENCY MATCH, which is a
2.88 point improvement over the best data-driven
model in the literature. We also consider the struc-
tural validity of logico-semantic graphs following
the original design of MRS.

The output of our parser is highly coherent: at
least 91% graphs are coherent, in that they allow
at least one sound scope-resolved logical form.

2 Logico-Semantic Graphs

2.1 Logic-Based Meaning Representations

Classic theories of natural language semantics are
based on the assumption that the core meaning of a

Source code: https://github.com/draplater/var-parser/
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Abstract

A key problem in processing graph-based
meaning representations is graph parsing, i.e.
computing all possible derivations of a given
graph according to a (competence) grammar.
We demonstrate, for the first time, that exact
graph parsing can be efficient for large graphs
and with large Hyperedge Replacement Gram-
mars (HRGs). The advance is achieved by
exploiting locality as terminal edge-adjacency
in HRG rules. In particular, we highlight the
importance of 1) a terminal edge-first pars-
ing strategy, 2) a categorization of a subclass
of HRG, i.e. what we call Weakly Regular
Graph Grammar, and 3) distributing argument-
structures to both lexical and phrasal rules.

1 Introduction

Language production, though as important as lan-
guage understanding, has received very limited
theoretical and empirical research attention. A
fundamental problem in modeling language pro-
duction is parsing meaning representations, i.e.
computing all possible analyses of a given mean-
ing representation (MR) according to a (compe-
tence) grammar. In theory, the worst-case com-
plexities of existing algorithms are exponential or
high-degree polynomial w.r.t. grammar size and
input length. In practice, there are few systems
that can parse large but frequent MRs with a realis-
tic, wide-coverage grammar in a reasonable time.

The major contribution of this paper is an ex-
act yet efficient method to parse MRs in the
framework of graph-based semantic representa-
tions (Koller et al., 2019) and Hyperedge Replace-
ment Grammar (Drewes et al., 1997). The abil-
ity to enumerate all possible analyses of a graph
facilitates surface realization, grammar induction,
recursive graph embedding, etc. The advance in
efficiency is from exploiting locality of HRG rules
from the rarely discussed perspective of language

production, a reversed direction to language under-
standing. We discuss locality in a sense of termi-
nal edge-adjacency and develop a locality-centric
complexity analysis of the de facto algorithm in-
troduced by Chiang et al. (2013). Our analysis
motivates (1) a terminal edge-first parsing strategy,
(2) a categorization of a subclass of HRG, i.e. what
we call Weakly Regular Graph Grammar, and (3) a
computational support in the constructivist hypoth-
esis in theoretical linguistics. Altogether, our anal-
ysis leads to a substantial improvement in practical
graph parsing. An MR with the number of concep-
tual nodes ranging from 5 to 50 corresponding to
a Wall Street Journal sentence can receive a full-
forest analysis in 0.089 second on average with a
large-scale comprehensive grammar; Even seman-
tic graphs with c.a. 80 conceptual nodes can be
processed in less than 0.5 second.

2 A Graph-Structured Syntax-Semantics
Interface

Linguistically-informed graph parsing needs a pre-
cise model of the syntax-semantics interface. To
this end, we need to precisely describe elementary
structures corresponding to linguistic units at (mor-
phological,) lexical and phrasal levels, and pre-
cisely describe the MERGE operation of two lin-
guistic units. Under the umbrella of graph-based
MRs, we employ hypergraphs and HRGs (Drewes
et al., 1997) to achieve the two goals.

Throughout this paper, we define an edge-
labeled, ordered hypergraph over finite alphabet
Σ as a tuple G = (V,E, ℓ), where V is a finite set
of nodes, E ⊆ V + is a finite set of hyperedges,
and ℓ : E 7→ Σ is a labeling function. A hyper-
edge can connect to more than two nodes or a sin-
gle node. Labels can be associated to edges but not
nodes. The set of nodes connected by edge e are
denoted by V (e) and the set of edges connected to
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Abstract

This paper is concerned with semantic pars-
ing for English as a second language (ESL).
Motivated by the theoretical emphasis on the
learning challenges that occur at the syntax-
semantics interface during second language
acquisition, we formulate the task based on
the divergence between literal and intended
meanings. We combine the complementary
strengths of English Resource Grammar, a
linguistically-precise hand-crafted deep gram-
mar, and TLE, an existing manually annotated
ESL UD-TreeBank with a novel reranking
model. Experiments demonstrate that in com-
parison to human annotations, our method can
obtain a very promising SemBanking qual-
ity. By means of the newly created corpus,
we evaluate state-of-the-art semantic parsing
as well as grammatical error correction mod-
els. The evaluation profiles the performance of
neural NLP techniques for handling ESL data
and suggests some research directions.

1 Introduction

There are more people around the world learning
English as a second language (ESL) than there
are native speakers of English with this gap con-
tinually and steadily expanding (Crystal, 2012).
Accordingly, an extremely large volume of non-
native English texts are generated every day. We
need an automatic machinery to annotate such
large-scale atypical data with in-depth linguistic
analysis. High-performance automatic annotation
of learner texts, from an engineering point of view,
enables it possible to derive high-quality informa-
tion by structuring the specific type of data, and
from a scientific point of view, facilitates quan-
titative studies for Second Language Acquisition
(SLA), which is complementary to hands-on ex-
periences in interpreting interlanguage phenom-

∗Now works at Alibaba Group.

ena (Gass, 2013). This direction has been re-
cently explored by the NLP community (Nagata
and Sakaguchi, 2016; Berzak et al., 2016a; Lin
et al., 2018).

Different from standard English, ESL may pre-
serve many features of learners’ first languages1.
The difference between learner texts and bench-
mark training data, e.g. Penn TreeBank (PTB;
Marcus et al., 1993), is more related to linguis-
tic competence, rather than performance (Chom-
sky, 2014). This makes processing ESL different
from almost all the existing discussions on domain
adaptation in NLP.

Despite the ubiquity and importance of interlan-
guages at both the scientific and engineering lev-
els, it is only partially understood how NLP mod-
els perform on them. In this paper, we present, to
the best of our knowledge, the first study on Se-
mantic Parsing for English as a Second Language.
Motivated by the Interface Hypothesis (Sorace,
2011) in SLA, we emphasize on the divergence
between literal and intended meanings. To obtain
reliable semantic analyses in order to represent the
two types of meanings, we propose to combine
English Resource Grammar (Flickinger, 2000),
which is a wide-coverage, linguistically-precise,
hand-crafted grammar and TLE, which is a man-
ually annotated syntactic treebank for ESL in the
Universal Dependency (UD; Berzak et al., 2016b)
framework. In particular, we introduce a rerank-
ing model which utilizes the partial constraints
provided by gold syntactic annotations to disam-
biguate among the grammar-licensed candidate
analyses. Experiments on DeepBank (Flickinger
et al., 2012) demonstrates the effectiveness of our
proposed model.

By means of the newly created corpus, we study
semantic parsing for ESL, taking Elementary De-

1Henceforth, the first and second language are referred to
as L1 and L2, respectively.
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Abstract

Contextual word representations derived from
large-scale neural language models are suc-
cessful across a diverse set of NLP tasks,
suggesting that they encode useful and trans-
ferable features of language. To shed light
on the linguistic knowledge they capture, we
study the representations produced by sev-
eral recent pretrained contextualizers (variants
of ELMo, the OpenAI transformer language
model, and BERT) with a suite of sixteen di-
verse probing tasks. We find that linear mod-
els trained on top of frozen contextual repre-
sentations are competitive with state-of-the-art
task-specific models in many cases, but fail on
tasks requiring fine-grained linguistic knowl-
edge (e.g., conjunct identification). To inves-
tigate the transferability of contextual word
representations, we quantify differences in the
transferability of individual layers within con-
textualizers, especially between recurrent neu-
ral networks (RNNs) and transformers. For in-
stance, higher layers of RNNs are more task-
specific, while transformer layers do not ex-
hibit the same monotonic trend. In addition, to
better understand what makes contextual word
representations transferable, we compare lan-
guage model pretraining with eleven super-
vised pretraining tasks. For any given task,
pretraining on a closely related task yields bet-
ter performance than language model pretrain-
ing (which is better on average) when the pre-
training dataset is fixed. However, language
model pretraining on more data gives the best
results.

1 Introduction

Pretrained word representations (Mikolov et al.,
2013; Pennington et al., 2014) are a key compo-
nent of state-of-the-art neural NLP models. Tra-
ditionally, these word vectors are static—a single

*Work done while at the Allen Institute for Artificial In-
telligence.

Figure 1: An illustration of the probing model setup
used to study the linguistic knowledge within contex-
tual word representations.

vector is assigned to each word. Recent work has
explored contextual word representations (hence-
forth: CWRs), which assign each word a vector
that is a function of the entire input sequence; this
enables them to model the use of words in context.
CWRs are typically the outputs of a neural net-
work (which we call a contextualizer) trained on
tasks with large datasets, such as machine trans-
lation (McCann et al., 2017) and language mod-
eling (Peters et al., 2018a). CWRs are extraordi-
narily effective—using them in place of traditional
static word vectors within the latest models leads
to large gains across a variety of NLP tasks.

The broad success of CWRs indicates that they
encode useful, transferable features of language.
However, their linguistic knowledge and transfer-
ability are not yet well understood.

Recent work has explored the linguistic knowl-
edge captured by language models and neural ma-
chine translation systems, but these studies often
focus on a single phenomenon, e.g., knowledge of
hierarchical syntax (Blevins et al., 2018) or mor-
phology (Belinkov et al., 2017a). We extend prior
work by studying CWRs with a diverse set of six-
teen probing tasks designed to assess a wide array
of phenomena, such as coreference, knowledge of
semantic relations, and entity information, among
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Abstract

This paper presents new state-of-the-art models for three tasks,
part-of-speech tagging, syntactic parsing, and semantic pars-
ing, using the cutting-edge contextualized embedding frame-
work known as BERT. For each task, we first replicate and
simplify the current state-of-the-art approach to enhance its
model efficiency. We then evaluate our simplified approaches
on those three tasks using token embeddings generated by
BERT. 12 datasets in both English and Chinese are used for
our experiments. The BERT models outperform the previously
best-performing models by 2.5% on average (7.5% for the
most significant case). All models and source codes are avail-
able in public so that researchers can improve upon and utilize
them to establish strong baselines for the next decade. We also
provide a dedicated error analysis and extensive dissections in
https://arxiv.org/abs/1908.04943.

1 Introduction
It is no exaggeration to say that word embeddings trained
by vector-based language models (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014; Bojanowski et al.
2017) have changed the game of NLP once and for all. These
pre-trained word embeddings trained on large corpus im-
prove downstream tasks by encoding rich word semantics
into vector space. However, word senses are ignored in these
earlier approaches such that a unique vector is assigned to
each word, neglecting polysemy from the context.

Recently, contextualized embedding approaches emerge
with advanced techniques to dynamically generate word em-
beddings from different contexts. To address polysemous
words, Peters et al. (2018) introduce ELMo, which is a word-
level Bi-LSTM language model. Akbik, Blythe, and Vollgraf
(2018) apply a similar approach to the character-level, called
Flair, while concatenating the hidden states corresponding
to the first and the last characters of each word to build the
embedding of that word. Apart from these unidirectional re-
current language models, Devlin et al. (2018) replace the
transformer decoder from Radford et al. (2018) with a bidi-
rectional transformer encoder, then train the BERT system

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on 3.3B word corpus. After scaling the model size to hun-
dreds of millions parameters, BERT brings markedly huge
improvement to a wide range of tasks without substantial
task-specific modifications.

In this paper, we verify the effectiveness and conciseness
of BERT by first generating token-level embeddings from
it, then integrating them to task-oriented yet efficient model
structures (Section 3). With careful investigation and engi-
neering, our simplified models significantly outperform many
of the previous state-of-the-art models, achieving the highest
scores for 11 out of 12 datasets (Section 4).

To the best of our knowledge, it is the first work that tightly
integrates BERT embeddings to these three downstream tasks
and present such high performance. All our resources includ-
ing the models and the source codes are publicly available.1

2 Related Work
Our work builds off recent work in representation learn-
ing, tagging and parsing. To learn contextualized represen-
tations, BERT (Devlin et al. 2018) employ masked LM to
jointly condition on both left and right contexts, showing
impressive improvement in various tasks. As a trend for
tagging, fine grained features often result in better perfor-
mance. These features include the morphological and con-
textual information from contextual string embeddings (Ak-
bik, Blythe, and Vollgraf 2018), the representations from
both string and token based character Bi-LSTM language
models (Bohnet et al. 2018), and the ensemble of multi-
lingual BERT and conventional representations (Heinzer-
ling and Strube 2019). Among parsing community, graph-
based parsers (Dozat and Manning 2017; Clark et al. 2018;
Ma et al. 2018) resurge due to GPU parallelization. Recently,
(Zhou and Zhao 2019) achieved impressive results by jointly
learning constituency and dependency parsing with BERT.

3 Approach
3.1 Token-level Embeddings with BERT
BERT splits each token into subwords using WordPiece (Wu
et al. 2016), which do not necessarily reflect any morphol-
ogy in linguistics. For example, Rainwater gets split into

1https://github.com/emorynlp/bert-2019
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Compatibility, Comparison, Competition

Joint Work with Linköping, Prague, and Yusuke Miyao
I Three parallel semantic annotations over the venerable WSJ text;
I sentence- and token-aligned (PTB tokenization, Unicode punctuation);
I bi-lexical DM: DELPH-IN MRS–Derived Bi-Lexical Dependencies;
I SemEval 2014 & 2015 parsing shared tasks; reference release via LDC;

→ now known as SDP: (Broad-Coverage) Semantic Dependency Parsing:
http://sdp.delph-in.net

Joint Work with Brandeis & Colorado, Jerusalem, and Groningen
I Beyond bi-lexical simplifications: general (directed) semantic graphs;
I relate to perceived ‘mainstream’: Abstract Meaning Representation;
I a ‘new kid’ on the block: Universal Conceptual Cognitive Annotation;
→ Meaning Representation Parsing (MRP) tasks at CoNLL 2019 and 2020:

http://mrp.nlpl.eu
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Brief Genealogy of ERS Simplifications

Native Interface: Minimal Recursion Semantics (Copestake et al., 2005)
I Logic-inspired tradition in (computational) natural language semantics;

I designer ‘logic’ for scope underspecification: labeled tree fragments;

I grammar provides (highly) partial information about possible scopings;

I downstream usages (so far) predominantly on unscoped representations.

Dependency-Inspired, (Mostly) Graph-Based Alternate Renderings

2000 K2Y Callmeier & Flickinger (Driving up to Napa Valley)
2002 EDS Variable-free dependency graph (Oepen & Lønning, 2006)
2009 DMRS Extend EDS with underspedified scope (Copestake, 2009)
2012 DM Reduce EDS to bi-lexical form (Ivanova et al., 2012)
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(0) Two Bi-Lexical Frameworks: DM & PSD
DM: DELPH-IN MRS Bi-Lexical Dependencies (Ivanova et al., 2012)
I Simplification from underspecified logical forms (ERS; coming later);

a similar technique almost impossible apply other crop
DT JJ NN RB JJ VB JJ NNS
q a_to n a a_for v_to a n

top

BV

ARG1 ARG1 ARG1

ARG2 ARG3

ARG1

PSD: Prague Semantic Dependencies (Hajič et al., 2012)
I Simplification from FGD tectogrammatical trees (Sgall et al., 1986).

similar technique be almost impossible apply other crop

RSTR

top

ACT

PAT
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ADDR

PAT

RSTR
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Abstract

Task 8 at SemEval 2014 defines Broad-
Coverage Semantic Dependency Pars-
ing (SDP) as the problem of recovering
sentence-internal predicate–argument rela-
tionships for all content words, i.e. the se-
mantic structure constituting the relational
core of sentence meaning. In this task
description, we position the problem in
comparison to other sub-tasks in compu-
tational language analysis, introduce the se-
mantic dependency target representations
used, reflect on high-level commonalities
and differences between these representa-
tions, and summarize the task setup, partic-
ipating systems, and main results.

1 Background and Motivation

Syntactic dependency parsing has seen great ad-
vances in the past decade, in part owing to rela-
tively broad consensus on target representations,
and in part reflecting the successful execution of a
series of shared tasks at the annual Conference for
Natural Language Learning (CoNLL; Buchholz &
Marsi, 2006; Nivre et al., 2007; inter alios). From
this very active research area accurate and efficient
syntactic parsers have developed for a wide range
of natural languages. However, the predominant
data structure in dependency parsing to date are
trees, in the formal sense that every node in the de-
pendency graph is reachable from a distinguished
root node by exactly one directed path.

This work is licenced under a Creative Commons At-
tribution 4.0 International License. Page numbers and the
proceedings footer are added by the organizers: http://
creativecommons.org/licenses/by/4.0/.

Unfortunately, tree-oriented parsers are ill-suited
for producing meaning representations, i.e. mov-
ing from the analysis of grammatical structure to
sentence semantics. Even if syntactic parsing ar-
guably can be limited to tree structures, this is not
the case in semantic analysis, where a node will
often be the argument of multiple predicates (i.e.
have more than one incoming arc), and it will often
be desirable to leave nodes corresponding to se-
mantically vacuous word classes unattached (with
no incoming arcs).

Thus, Task 8 at SemEval 2014, Broad-Coverage
Semantic Dependency Parsing (SDP 2014),1 seeks
to stimulate the dependency parsing community
to move towards more general graph processing,
to thus enable a more direct analysis of Who did
What to Whom? For English, there exist several
independent annotations of sentence meaning over
the venerable Wall Street Journal (WSJ) text of the
Penn Treebank (PTB; Marcus et al., 1993). These
resources constitute parallel semantic annotations
over the same common text, but to date they have
not been related to each other and, in fact, have
hardly been applied for training and testing of data-
driven parsers. In this task, we have used three
different such target representations for bi-lexical
semantic dependencies, as demonstrated in Figure 1
below for the WSJ sentence:

(1) A similar technique is almost impossible to apply to
other crops, such as cotton, soybeans, and rice.

Semantically, technique arguably is dependent on
the determiner (the quantificational locus), the mod-
ifier similar, and the predicate apply. Conversely,
the predicative copula, infinitival to, and the vac-

1See http://alt.qcri.org/semeval2014/
task8/ for further technical details, information on how to
obtain the data, and official results.
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Abstract

Task 18 at SemEval 2015 defines Broad-
Coverage Semantic Dependency Parsing (SDP)
as the problem of recovering sentence-internal
predicate–argument relationships for all con-
tent words, i.e. the semantic structure consti-
tuting the relational core of sentence meaning.
In this task description, we position the prob-
lem in comparison to other language analysis
sub-tasks, introduce and compare the semantic
dependency target representations used, and
summarize the task setup, participating sys-
tems, and main results.

1 Background and Motivation

Syntactic dependency parsing has seen great ad-
vances in the past decade, but tree-oriented parsers
are ill-suited for producing meaning representations,
i.e. moving from the analysis of grammatical struc-
ture to sentence semantics. Even if syntactic parsing
arguably can be limited to tree structures, this is not
the case in semantic analysis, where a node will often
be the argument of multiple predicates (i.e. have more
than one incoming arc), and it will often be desirable
to leave nodes corresponding to semantically vacu-
ous word classes unattached (with no incoming arcs).
Thus, Task 18 at SemEval 2015, Broad-Coverage
Semantic Dependency Parsing (SDP 2015),1 seeks
to stimulate the parsing community to move towards

1See http://alt.qcri.org/semeval2015/
task18/ for further technical details, information on how to
obtain the data, and official results.

more general graph processing, to thus enable a more
direct analysis of Who did What to Whom?

Extending the very similar predecessor task
SDP 2014 (Oepen et al., 2014), we make use of three
distinct, parallel semantic annotations over the same
common texts, viz. the venerable Wall Street Journal
(WSJ) and Brown segments of the Penn Treebank
(PTB; Marcus et al., 1993) for English, as well as
comparable resources for Chinese and Czech. Fig-
ure 1 below shows example target representations,
bi-lexical semantic dependency graphs in all cases,
for the WSJ sentence:

(1) A similar technique is almost impossible to apply to other
crops, such as cotton, soybeans, and rice.

Semantically, technique arguably is dependent on the
determiner (the quantificational locus), the modifier
similar, and the predicate apply. Conversely, the
predicative copula, infinitival to, and the vacuous
preposition marking the deep object of apply can
be argued to not have a semantic contribution of
their own. Besides calling for node re-entrancies
and partial connectivity, semantic dependency graphs
may also exhibit higher degrees of non-projectivity
than is typical of syntactic dependency trees.

Besides its relation to syntactic dependency pars-
ing, the task also has some overlap with Se-
mantic Role Labeling (SRL; Gildea & Jurafsky,
2002).2 However, we require parsers to identify ‘full-

2In much previous SRL work, target representations typi-
cally draw on resources like PropBank and NomBank (Palmer
et al., 2005; Meyers et al., 2004), which are limited to argu-
ment identification and labeling for verbal and nominal predi-
cates. A plethora of semantic phenomena—for example negation
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High-Level Goals of the MRP Shared Tasks

Cross-Framework Comparability and Interoperability
I Vast, complex landscape of representing natural language meaning;
I diverse linguistic traditions, modeling assumptions, levels of ambition;
I some differences are superficial (e.g. terminology), others run deeper;
→ clarify concepts and terminology; unify representations and evaluation.

Parsing into Graph-Structured Representations
I Cottage industry of parsers with output structures beyond rooted trees;
I different families: factorization, transitions, composition, ‘translation’;
I much framework-internal evolution: design reflects specific assumptions;
→ evaluate across frameworks; learning from complementary knowledge.

Learning from Complementary Knowledge
I Cross-Framework Perspective: Seek commonality and complementarity.
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Graph Theory 101

G = 〈N, E, T 〉
I G is a directed graph: N is set of nodes; E ⊆ N ×N is set of edges;
I T ⊆ N is possibly empty set of top node(s): the ‘main’ predicate(s);

I in- and out-degree of n ∈ N count edges to and from n; in = 0: root;
I top in Abrams arrived quickly. is arrive, but can be argument of quick;
I semantic graphs often multi-rooted: rootness just a structural property;
I a node n is reentrant if in(n) > 1 (shared argument across predicates);
I cycles can occur: directed path from m to n and (‘back’) from n to m;
I G is connected if there is an undirected path between all pairs of nodes;
I G is a tree if |T | = 1 and there is a unique path to all other nodes.
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Anchoring in the Surface String

Relating Pieces of Meaning to the Linguistic Signal
I Intuitively, sub-structures of meaning relate to sub-parts of the input;
I semantic frameworks vary in how much weight to put on this relation;

I anchoring of graph elements in sub-strings of the underlying utterance;
I can be part of semantic annotations or not; can take different forms;
I hierarchy of anchoring types: Flavor (0)–(2); bilexical graphs strictest;
I anchoring central in parsing, explicit or latent; aka ‘alignment’ for AMR;
I relevant to at least some downstream tasks; should impact evaluation.

Flavor Name Example Type of Anchoring

(0) bilexical DM, PSD nodes are sub-set of surface tokens
(1) anchored EDS, UCCA free node–sub-string correspondences
(2) unanchored AMR no explicit sub-string correspondences
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(1) Elementary Dependency Structures (EDS)

Break Free of Bi-Lexical Limitations (Oepen & Lønning, 2006)
I Decomposition or construction meaning; anchors: arbitrary sub-strings.

_almost_a_1
〈23:29〉

_impossible_a_for
〈30:40〉

ARG1

_a_q
〈0:1〉

_technique_n_1
〈10:19〉

BV

_similar_a_to
〈2:9〉

ARG1

comp
〈2:9〉

ARG1

_apply_v_to
〈44:49〉

ARG1

ARG2

_crop_n_1
〈59:65〉

ARG3

udef_q
〈53:100〉

BV

_other_a_1
〈53:58〉

ARG1

A similar technique is almost impossible to apply to other crops.
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(1) Universal Conceptual Cognitive Annotation (UCCA)

Multi-Layered Design (Abend & Rappoport, 2013); Foundational Layer
I Tree backbone: semantic ‘constituents’ are scenes (‘clauses’) and units;

I scenes (Process or State): pArticipants and aDverbials (plus F and U);
I complex units distinguish Center and Elaborator(s); allow remote edges.

〈0:1〉

〈2:9〉

S

〈10:19〉

A

F E

C

〈20:22〉

〈23:29〉 〈30:40〉

E C

〈41:43〉 〈44:49〉

〈50:52〉 〈53:58〉 〈59:65〉

R E C

A F D F P A

〈65:66〉

U

A similar technique is almost impossible to apply to other crops.
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(2) Abstract Meaning Representation (AMR)

possible-01
polarity -

almost

mod (domain)

apply-02

ARG1

technique

ARG1

crop

ARG2

resemble-01

(ARG1)-of

other

mod (domain)

Banarescu et al. (2013)

I Abstractly (if not linguistically)
similar to EDS, but unanchored;

I verbal senses from PropBank++;

I negation as node-local property;

I tree-like annotation: inversed
edges normalized for evaluation;

I originally designed for (S)MT;
various NLU applications to date.

A similar technique is almost impossible to apply to other crops.
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MRP 2019 (CoNLL Shared Task): Eighteen Teams

Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 CoNLL, pages 1–27
Hong Kong, November 3, 2019. c©2019 Association for Computational Linguistics
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MRP 2019: Cross-Framework Meaning Representation Parsing
Stephan Oepen♣, Omri Abend♠, Jan Hajič♥, Daniel Hershcovich♦, Marco Kuhlmann◦,
Tim O’Gorman?, Nianwen Xue•, Jayeol Chun•, Milan Straka♥, and Zdeňka Urešová♥

♣ University of Oslo, Department of Informatics
♠ The Hebrew University of Jerusalem, School of Computer Science and Engineering

♥ Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics
♦ University of Copenhagen, Department of Computer Science

◦ Linköping University, Department of Computer and Information Science
? University of Colorado at Boulder, Department of Linguistics
• Brandeis University, Department of Computer Science

mrp-organizers@nlpl.eu ,
jchun@brandeis.edu , {straka |uresova}@ufal.mff.cuni.cz

Abstract

The 2019 Shared Task at the Conference for
Computational Language Learning (CoNLL)
was devoted to Meaning Representation Pars-
ing (MRP) across frameworks. Five distinct
approaches to the representation of sentence
meaning in the form of directed graphs were
represented in the training and evaluation data
for the task, packaged in a uniform graph ab-
straction and serialization. The task received
submissions from eighteen teams, of which
five do not participate in the official ranking
because they arrived after the closing deadline,
made use of extra training data, or involved
one of the task co-organizers. All technical in-
formation regarding the task, including system
submissions, official results, and links to sup-
porting resources and software are available
from the task web site at:

http://mrp.nlpl.eu

1 Background and Motivation

All things semantic are receiving heightened at-
tention in recent years, and despite remarkable ad-
vances in vector-based (continuous and distributed)
encodings of meaning, ‘classic’ (discrete and hier-
archically structured) semantic representations will
continue to play an important role in ‘making sense’
of natural language. While parsing has long been
dominated by tree-structured target representations,
there is now growing interest in general graphs as
more expressive and arguably more adequate target
structures for sentence-level analysis beyond sur-
face syntax, and in particular for the representation
of semantic structure.

The 2019 Conference on Computational Lan-
guage Learning (CoNLL) hosts a shared task (or
‘system bake-off’) on Cross-Framework Meaning

Representation Parsing (MRP 2019). The goal
of the task is to advance data-driven parsing into
graph-structured representations of sentence mean-
ing. For the first time, this task combines formally
and linguistically different approaches to meaning
representation in graph form in a uniform train-
ing and evaluation setup. Participants were invited
to develop parsing systems that support five dis-
tinct semantic graph frameworks (see §3 below)—
which all encode core predicate–argument struc-
ture, among other things—in the same implemen-
tation. Ideally, these parsers predict sentence-level
meaning representations in all frameworks in paral-
lel. Architectures utilizing complementary knowl-
edge sources (e.g. via parameter sharing) were en-
couraged, though not required. Learning from mul-
tiple flavors of meaning representation in tandem
has hardly been explored (with notable exceptions,
e.g. the parsers of Peng et al., 2017; Hershcovich
et al., 2018; or Stanovsky and Dagan, 2018).

Training and evaluation data were provided for
all five frameworks. The task design aims to reduce
framework-specific ‘balkanization’ in the field of
meaning representation parsing. Its contributions
include (a) a unifying formal model over differ-
ent semantic graph banks (§2), (b) uniform rep-
resentations and scoring (§4 and §6), (c) con-
trastive evaluation across frameworks (§5), and
(d) increased cross-fertilization via transfer and
multi-task learning (§7). Thus, the task engages
the combined community of parser developers for
graph-structured output representations, including
from prior framework-specific tasks at the Seman-
tic Evaluation (SemEval) exercises between 2014
and 2019 (Oepen et al., 2014, 2015; May, 2016;
May and Priyadarshi, 2017; Hershcovich et al.,
2019). Owing to the scarcity of semantic anno-
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Training and Evaluation Data in the Shared Task

DM PSD EDS UCCA AMR

Flavor 0 0 1 1 2

tr
ai

n Text Type newspaper newspaper newspaper mixed mixed
Sentences 35,656 35,656 35,656 6,572 56,240
Tokens 802,717 802,717 802,717 138,268 1,000,217

te
st

Text Type mixed mixed mixed mixed mixed
Sentences 3,359 3,359 3,359 1,131 1,998
Tokens 64,853 64,853 64,853 21,647 39,520

I DM, PSD, and EDS annotate the same text (Sections 00–20 of WSJ);
I UCCA: samples of EWT & Wikipedia; AMR: twelve different sources;

I linguistics: 100-item WSJ sample in all frameworks publicly available;
I evaluation: subset of 100 sentences from The Little Prince is public.
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Graphbank Statistics (Kuhlmann & Oepen, 2016)

DM PSD EDS UCCA AMR−1

co
un

ts

(01) number of graphs 35,656 35,656 35,656 6,572 56,240
(01) number of tokens 802,717 802,717 802,717 138,268 1,000,217
(02) average number of tokens 22.51 22.51 22.51 21.03 17,78
(03) average nodes per token 0.77 0.64 1.29 1.37 0.65
(04) number of edge labels 59 90 10 15 101

tr
ee

ne
ss

(05) %g trees 2.31 42.26 0.09 34.83 22.24
(06) %g treewidth one 69.82 43.08 68.99 41.57 50.00
(07) average treewidth 1.30 1.61 1.31 1.61 1.56
(08) maximal treewidth 3 7 3 4 5
(09) average edge density 1.019 1.073 1.015 1.053 1.092
(10) %n reentrant 27.43 11.41 32.78 4.98 19.89
(11) %g cyclic 0.00 0.00 0.12 0.00 0.38
(12) %g not connected 6.57 0.70 1.74 0.00 0.00
(13) %g multi-rooted 97.47 40.60 99.93 0.00 71.37
(14) percentage non-top roots 44.94 4.34 54.85 0.00 20.09

or
de

r (15) average edge length 2.684 3.320 – – –
(16) %g noncrossing 69.21 64.61 – – –
(17) %g pagenumber two 99.59 98.08 – – –
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r (15) average edge length 2.684 3.320 – – –
(16) %g noncrossing 69.21 64.61 – – –
(17) %g pagenumber two 99.59 98.08 – – –
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Cross-Framework Evaluation: MRP Graph Similarity
I Break down graphs into types of information: per-type and overall F1;

I

I requires node–node correspondences; search for overall maximum score;
I maximum common edge subgraph isomorphism (MCES) is NP-hard;
→ smart initialization, scheduling, and pruning yield strong approximation.
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Different Types of Semantic Graph ‘Atoms’

DM PSD EDS UCCA AMR

Top Nodes 3 3 3 3 3

Labeled Edges 3 3 3 3 3

Node Labels 3 3 3 7 3

Node Properties 3 3 3 7 3

Node Anchoring 3 3 3 3 7

Edge Attributes 7 7 7 3 7
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Comparison to Top-Performing Data-Driven Parsers

Tops Labels Properties Anchors Edges

P R F1 P R F1 P R F1 P R F1 P R F1

ERG .92 .92 .918 .99 .99 .987 .96 .96 .956 .99 .99 .994 .91 .91 .912

SJTU–NICT .93 .93 .933 .95 .95 .949 .96 .95 .955 .99 .99 .993 .93 .92 .924

D
M HIT-SCIR .93 .93 .926 .93 .93 .930 .95 .95 .953 .99 .99 .993 .93 .92 .925

SUDA–Alibaba .91 .91 .911 .90 .91 .903 .91 .92 .915 .97 .99 .982 .89 .91 .898

Peking .93 .93 .927 .92 .91 .915 .95 .94 .945 .99 .99 .991 .92 .92 .924

ERG .90 .90 .902 .97 .96 .965 .96 .96 .960 .96 .96 .963 .93 .93 .929

SUDA–Alibaba .90 .90 .899 .91 .91 .912 .89 .91 .897 .95 .95 .949 .90 .90 .897

ED
S HIT-SCIR .88 .82 .852 .90 .89 .894 .89 .91 .895 .95 .94 .943 .89 .88 .888

SJTU–NICT .91 .85 .877 .93 .86 .894 .79 .76 .775 .97 .90 .934 .95 .82 .878

Peking .83 .83 .829 .95 .94 .946 .91 .96 .936 .96 .96 .961 .94 .93 .933
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High-Level Overview of Submissions

Teams DM PSD EDS UCCA AMR MTL Approach

ERG∦§† 3 7 3 7 7 7 Composition
TUPA§† 3 3 3 3 3 7/3 Transition

HIT-SCIR 3 3 3 3 3 7 Transition
SJTU–NICT 3 3 3 3 3 7 Factorization
SUDA–Alibaba 3 3 3 3 3 (3) Factorization
Saarland 3 3 3 3 3 7 Composition
Hitachi 3 3 3 3 3 (3) Factorization
ÚFAL MRPipe 3 3 3 3 3 7 Transition
ShanghaiTech 3 3 3 7 3 7 Factorization
Amazon 3 3 7 7 3 7 Factorization
JBNU 3 3 7 3 7 7 Factorization
SJTU 3 3 3 3 3 3 Transition
ÚFAL–Oslo 3 3 3 3 3 7 Transition
HKUST 3 3 7 3 7 ?
Bocharov 7 7 7 7 3 ?

Peking∦ 3 3 3 3 7 7 Factorization
CUHK§ 3 3 3 3 3 3 Transition
Anonymous§ 7 3 7 7 7 ?
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Score Distributions: Top Systems

Overall DM PSD EDS UCCA AMR
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EDSs are ‘Radically Compositional’

named
CARG Pierre

named
CARG Vinken

compound

ARG2 ARG1

Pierre Vinken

Named Entities
I Underspecified structure in names;
I few, lexically determined sub-types.

Michelle and Barack Obama

dofw
CARG Monday

_on_p_temp

ARG2
ARG1

on Monday

Prepositions (and Similar)
I Predicates: distinct two-place relation;
I specialized sub-senses as appropriate.

before and during the meeting

card
CARG 30

card
CARG 2

plusARG1

ARG2 ARG3

thirty-two

Literal Numbers
I syntax yields arithmetic expressions;
I trivial ‘downstream’ normalization.

ten to twenty thousand
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