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Possibly First ‘External’ Consumers (FSMNLP 2013)

Modeling Graph Languages with Grammars Extracted via Tree
Decompositions

Bevan Keeley Jones™!
B.K.Jones@sms.ed.ac.uk

* School of Informatics
University of Edinburgh
Edinburgh, UK

Abstract

Work on probabilistic models of natu-
ral language tends to focus on strings
and trees, but there is increasing in-
terest in more general graph-shaped
structures since they seem to be bet-
ter suited for representing natural lan-
guage semantics, ontologies, or other
varieties of knowledge structures. How-
ever, while there are relatively sim-
ple approaches to defining generative
models over strings and trees, it has
proven more challenging for more gen-
eral graphs. This paper describes a
natural generalization of the n-gram to
graphs, making use of Hyperedge Re-

Sharon Goldwater*
sgwater@inf.ed.ac.uk

Mark Johnson!
mark.johnson@mq.edu.au

t Department of Computing
Macquarie University
Sydney, Australia

on graphs has been hampered, due, in part,
to the absence of a general agreed upon for-
malism for processing and modeling such data
structures. Where string and tree modeling
benefits from the wildly popular Probabilistic
Context Free Grammar (PCFG) and related
formalisms such as Tree Substitution Gram-
mar, Regular Tree Grammar, Hidden Markov
Models, and n-grams, there is nothing of sim-
ilar popularity for graphs. We need a slightly
different formalism, and Hyperedge Replace-
ment Grammar (HRG) (Drewes et al., 1997),
a variety of context-free grammar for graphs,
suggests itself as a reasonable choice given its
close analogy with CFG. Of course, in order
to make use of the formalism we need actual
grammars, and this paper fills that gap by in-



Mainstream Journals (CL 2016)

Transition-Based Parsing for Deep
Dependency Structures

Xun Zhang*
Peking University

Yantao Du”
Peking University

Weiwei Sun*
Peking University

Xiaojun Wan*
Peking University

Derivations under different grammar formalisms allow extraction of various dependency struc-
tures. Particularly, bilexical deep dependency structures beyond surface tree representation



Mainstream Journals (TACL 2016)

Parsing to Noncrossing Dependency Graphs

Marco Kuhl

and Peter J

Department of Computer and Information Science
Linkdping University, Sweden
marco.kuhlmann@liu.se and peter.jonsson@liu.se

Abstract

We study the generalization of maximum span-
ning tree dependency parsing to maximum
acyclic subgraphs. Because the underlying op-
timization problem is intractable even under
an arc-factored model, we consider the restric-
tion to noncrossing dependency graphs. Our
main contribution is a cubic-time exact infer-
ence algorithm for this class. We extend this al-
gorithm into a practical parser and evaluate its
performance on four linguistic data sets used in
semantic dependency parsing. We also explore

While a maximum spanning tree of a weighted
digraph can be found in polynomial time (Tarjan,
1977), computing a maximum acyclic subgraph is
intractable, and even good approximate solutions are
hard to find (Guruswami et al., 2011). In this pa-
per we therefore address maximum acyclic subgraph
parsing under the restriction that the subgraph should
be noncrossing, which informally means that its arcs
can be drawn on the half-plane above the sentence in
such a way that no two arcs cross (and without chang-
ing the order of the words). The main contribution
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Big Conferences (ACL 2017)

Robust Incremental Neural Semantic Graph Parsing

Jan Buys' and Phil Blunsom'?

'Department of Computer Science, University of Oxford

2DeepMind

{jan.buys,phil.blunsom}@cs.ox.ac.uk

Abstract

Parsing sentences to linguistically-
expressive semantic representations is a
key goal of Natural Language Process-
ing. Yet statistical parsing has focussed
almost exclusively on bilexical depen-
dencies or domain-specific logical forms.
We propose a neural encoder-decoder
transition-based parser which is the first
full-coverage semantic graph parser for
Minimal Recursion Semantics (MRS).
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However the linguistic structure used in applica-
tions has predominantly been shallow, restricted
to bilexical dependencies or trees.

In this paper we focus on robust parsing into
linguistically deep representations. The main rep-
resentation that we use is Minimal Recursion Se-
mantics (MRS) (Copestake et al., 1995, 2005),
which serves as the semantic representation of the
English Resource Grammar (ERG) (Flickinger,
2000). Existing parsers for full MRS (as op-
posed to bilexical semantic graphs derived from,
but simplifying MRS) are grammar-based, per-



nces (ACL 2017)

Deep Multitask Learning for Semantic Dependency Parsing

Hao Peng® Sam Thomson! Noah A. Smith*
*Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
{hapeng, nasmith}@cs .washington.edu, sthomson@cs.cmu.edu

Abstract

We present a deep neural architecture that
parses sentences into three semantic de-
pendency graph formalisms. By using ef-
ficient, nearly arc-factored inference and
a bidirectional-LSTM composed with a
multi-layer perceptron, our base system is
able to significantly improve the state of
the art for semantic dependency parsing,
without using hand-engineered features or
syntax. We then explore two multitask
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Big Conferences (ACL 2017)

Semantic Dependency Parsing via Book Embedding

Weiwei Sun, Junjie Cao and Xiaojun Wan
Institute of Computer Science and Technology, Peking University
The MOE Key Laboratory of Computational Linguistics, Peking University
{ws, junjie.cao, wanxiaojun}@pku.edu.cn

Abstract

We model a dependency graph as a book,
a particular kind of topological space, for
semantic dependency parsing. The spine
of the book is made up of a sequence of
words, and each page contains a subset
of noncrossing arcs. To build a semantic
graph for a given sentence, we design new
Maximum Subgraph algorithms to gener-
ate noncrossing graphs on each page, and
a Lagrangian Relaxation-based algorithm

Lt e e Lol Tl

complexity to low degrees. For transition-based
parsing, no principled decoding algorithms, e.g.
dynamic programming (DP), has been developed
for existing transition systems.

In this paper, we borrow the idea of book em-
bedding from graph theory, and propose a novel
framework to build parsers for flexible depen-
dency representations. In graph theory, a book is
a kind of topological space that consists of a spine
and a collection of one or more half-planes. In
our “book model” of semantic dependency graph,
the spine is made up of a sequence of words, and



Bigger Conferences (ACL 2018)

Simpler but More Accurate Semantic Dependency Parsing

Timothy Dozat
Stanford University
tdozat@stanford.edu

Abstract

While syntactic dependency annotations
concentrate on the surface or functional
structure of a sentence, semantic depen-
dency annotations aim to capture between-
word relationships that are more closely
related to the meaning of a sentence, using
graph-structured representations. We ex-
tend the LSTM-based syntactic parser of
Dozat and Manning (2017) to train on and
generate these graph structures. The re-
sulting system on its own achieves state-

Christopher D. Manning
Stanford University
manning@stanford.edu

strict tree structure in favor of a richer graph-
structured representation, allowing them to cap-
ture more linguistic information about a sentence.
This opens up the possibility of providing more
useful information to downstream tasks (Reddy
et al., 2017; Schuster et al., 2017), but increases
the difficulty of automatically extracting that in-
formation, since most previous work on parsing
has focused on generating trees.

Dozat and Manning (2017) developed a suc-
cessful syntactic dependency parsing system with
few task-specific sources of complexity. In this



Bigger Conferences (ACL 2018)

Multitask Parsing Across Semantic Representations

Daniel Hershcovich'?

Omri Abend?

Ari Rappoport?

!The Edmond and Lily Safra Center for Brain Sciences
2School of Computer Science and Engineering
Hebrew University of Jerusalem
{danielh, oabend,arir}@cs.huji.ac.il

Abstract

The ability to consolidate information of
different types is at the core of intelli-
gence, and has tremendous practical value
in allowing learning for one task to benefit
from generalizations learned for others. In
this paper we tackle the challenging task of
improving semantic parsing performance,
taking UCCA parsing as a test case, and
AMR, SDP and Universal Dependencies
(UD) parsing as auxiliary tasks. We ex-

neriment an three lananacec ncine a nni-

fectively extend the training data, and has greatly
advanced with neural networks and representation
learning (see §2). We build on these ideas and pro-
pose a general transition-based DAG parser, able
to parse UCCA, AMR, SDP and UD (Nivre et al.,
2016). We train the parser using MTL to obtain
significant improvements on UCCA parsing over
single-task training in (1) in-domain and (2) out-
of-domain settings in English; (3) an in-domain
setting in German; and (4) an in-domain setting in
French, where training data is scarce.

The novelty of this work is in proposing a gen-
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Bigger Conferences (EMNLP 201

Semantics as a Foreign Language

Gabriel Stanovsky

*23 and Ido Dagan'

'Bar-Ilan University Computer Science Department, Ramat Gan, Israel

2Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA

3Allen Institute for Artificial Intelligence, Seattle, WA
gabis@cs.washington.edu
dagan@cs.biu.ac.il

Abstract

‘We propose a novel approach to semantic de-
pendency parsing (SDP) by casting the task as
an instance of multi-lingual machine transla-
tion, where each semantic representation is a
different foreign dialect. To that end, we first
generalize syntactic linearization techniques to
account for the richer semantic dependency
graph structure. Following, we design a neural
sequence-to-sequence framework which can
effectively recover our graph linearizations,
performing almost on-par with previous SDP
state-nf-the-art while reanirino lesc narallel

Lexical Dependencies (DM) (Flickinger, 2000),!
(2) Enju Predicate-Argument Structures (PAS)
(Miyao et al., 2014), and (3) Prague Semantic
Dependencies (PSD) (Hajic et al., 2012). These
annotations have garnered recent attention (e.g.,
(Buys and Blunsom, 2017; Peng et al., 2017a)),
and were consistently annotated in parallel on over
more than 30K sentences of the Wall Street Jour-
nal corpus (Charniak et al., 2000).

In this work we take a novel approach to graph
parsing, casting sentence-level semantic parsing as
a multilingual machine-translation task (MT). We

11



Even Bigger Conferences (ACL 2019)

Multi-Task Semantic Dependency Parsing with Policy Gradient for
Learning Easy-First Strategies

Shuhei Kurita

Center for Advanced Intelligence Project

RIKEN
Tokyo, Japan

shuhei.kurita@riken. jp

Abstract

In Semantic Dependency Parsing (SDP), se-
mantic relations form directed acyclic graphs,
rather than trees. We propose a new iterative
predicate selection (IPS) algorithm for SDP.
Our IPS algorithm combines the graph-based
and transition-based parsing approaches in or-
der to handle multiple semantic head words.
We train the IPS model using a combination
of multi-task learning and task-specific pol-
icy gradient training. Trained this way, IPS
achieves a new state of the art on the SemEval
NS Tack 18 datacate  Furtharmara wa ah-

Anders Sggaard
Department of Computer Science
University of Copenhagen
Copenhagen, Denmark
soegaard@di.ku.dk
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Figure 1: Semantic dependency parsing arcs of DM,
PAS and PSD formalisms.
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Even Bigger Conferences (ACL 2019)

Compositional Semantic Parsing Across Graphbanks

Matthias Lindemann* and Jonas Groschwitz* and Alexander Koller
Department of Language Science and Technology
Saarland University
{mlinde| jonasgl|koller}@coli.uni-saarland.de

Abstract

Most semantic parsers that map sentences to
graph-based meaning representations are hand-
designed for specific graphbanks. We present
a compositional neural semantic parser which
achieves, for the first time, competitive accura-
cies across a diverse range of graphbanks. In-
corporating BERT embeddings and multi-task
learning improves the accuracy further, setting
new states of the art on DM, PAS, PSD, AMR
2015 and EDS.

2018) assumes dependency graphs and cannot be
directly applied to EDS or AMR. Conversely, top
AMR parsers (Lyu and Titov, 2018) invest heavily
into identifying AMR-specific alignments and con-
cepts, which may not be useful in other graphbanks.
Hershcovich et al. (2018) parse across different se-
mantic graphbanks (UCCA, DM, AMR), but focus
on UCCA and do poorly on DM. The system of
Buys and Blunsom (2017) set a state of the art on
EDS at the time, but does poorly on AMR.

In this paper, we present a single semantic parser
that does very well across all of DM, PAS, PSD,

13



Even Bigger Conferences (EMNLP 2019)

Broad-Coverage Semantic Parsing as Transduction

Sheng Zhang Xutai Ma Kevin Duh Benjamin Van Durme
Johns Hopkins University
{zsheng2, xutaima}@jhu.edu
{kevinduh, vandurme}@cs.jhu.edu

Abstract

We unify different broad-coverage semantic
parsing tasks under a transduction paradigm,
and propose an attention-based neural frame-
work that incrementally builds a meaning rep-
resentation via a sequence of semantic rela-
tions. By leveraging multiple attention mecha-
nisms, the transducer can be effectively trained
without relying on a pre-trained aligner. Ex-
periments conducted on three separate broad-
coverage semantic parsing tasks - AMR, SDP
and UCCA — demonstrate that our attention-
based neural transducer improves the state of

Manning, 2018; Peng et al., 2017a) are not directly
transferable to AMR and UCCA because of the
lack of explicit alignments between tokens in the
sentence and nodes in the semantic graph.

While transition-based approaches are adapt-
able to different broad-coverage semantic parsing
tasks (Wang et al., 2018; Hershcovich et al., 2018;
Damonte et al., 2017), when it comes to represen-
tations such as AMR whose nodes are unanchored
to tokens in the sentence, a pre-trained aligner
has to be used to produce the reference transi-
tion sequences (Wang et al., 2015; Damonte et al.,

14



Last Week (ACL 2020)

Transition-based Semantic Dependency Parsing with Pointer Networks

Daniel Fernandez-Gonzalez and Carlos Gomez-Rodriguez
Universidade da Coruiia, CITIC
FASTPARSE Lab, LyS Group
Depto. de Ciencias de la Computacién y Tecnologias de la Informacién
Campus de Elvifia, s/n, 15071 A Coruiia, Spain
d.fgonzalez@udc.es, carlos.gomez@udc.es

Abstract

Transition-based parsers implemented with
Pointer Networks have become the new state
of the art in dependency parsing, excelling
in producing labelled syntactic trees and out-
performing graph-based models in this task.
In order to further test the capabilities of
these powerful neural networks on a harder
NLP problem, we propose a transition system
that, thanks to Pointer Networks, can straight-
forwardly produce labelled directed acyclic
graphs and perform semantic dependency pars-
ing. In addition. we enhance our abproach
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Last Week (ACL 2020)

Semi-Supervised Semantic Dependency Parsing Using CRF Autoencoders

Zixia Jia®, Youmi Ma', Jiong Cai°, Kewei Tu®*
°School of Information Science and Technology, ShanghaiTech University

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences

University of Chinese Academy of Sciences
Shanghai Engineering Research Center of Intelligent Vision and Imaging
Tokyo Institute of Technology
{jiazx, caijiong, tukw}@shanghaitech.edu.cn
youmi.ma@nlp.c.titech.ac. jp

Abstract

Semantic dependency parsing, which aims to
find rich bi-lexical relationships, allows words
to have multiple dependency heads, resulting
in graph-structured representations. We pro-
pose an approach to semi-supervised learning
of semantic dependency parsers based on the
CREF autoencoder framework. Our encoder is
a discriminative neural semantic dependency
parser that predicts the latent parse graph of
the input sentence. Our decoder is a gener-
ative neural model that reconstructs the input
sentence conditioned on the latent parse graph.

2018) or graph-based (Martins and Almeida, 2014;
Peng et al., 2017; Dozat and Manning, 2018; Wang
etal., 2019).

One limitation of supervised SDP is that labeled
SDP data resources are limited in scale and diver-
sity. Due to the rich relationships in SDP, the anno-
tation of semantic dependency graphs is expensive
and difficult, calling for professional linguists to de-
sign rules and highly skilled annotators to annotate
sentences. This limitation becomes more severe
with the rise of deep learning, because neural ap-
proaches are more data-hungry and susceptible to

16



Last Week (ACL 2020)

Parsing into Variable-in-situ Logico-Semantic Graphs

Yufei Chen' and Weiwei Sun'?
Wangxuan Institute of Computer Technology
'The MOE Key Laboratory of Computational Linguistics
2Center for Chinese Linguistics
Peking University
{yufei.chen,ws}@pku.edu.cn

Abstract

We propose variable-in-situ logico-semantic
graphs to bridge the gap between semantic
graph and logical form parsing. The new
type of graph-based meaning representation
allows us to include analysis for scope-related
phenomena, such as quantification, negation
and modality, in a way that is consistent
with the state-of-the-art underspecification ap-
proach. Moreover, the well-formedness of
such a graph is clear, since model-theoretic in-
terpretation is available. We demonstrate the
effectiveness of this new perspective by de-

Partly due to the lack of model-theoretic seman-
tics, it is rather difficult to add scope information
related to quantification, negation and modality to
a graph. Partly due to the lack of logical deduction
engines, it is rather difficult to directly perform au-
tomated reasoning over graphs.

This paper proposes to express logical forms
with variable-in-situ graphs for the ongoing ad-
vances in graph-centric formalisms, algorithms
and neural architectures. This leads us to a novel
neural graph rewriting system that combines the
strengths of Hyperedge Replacement Grammar

17



Last Week (ACL 2020)

Exact yet Efficient Graph Parsing, Bi-directional Locality and
the Constructivist Hypothesis

Yajie Ye! and Weiwei Sun'?
"Wangxuan Institute of Computer Technology
'The MOE Key Laboratory of Computational Linguistics
2Center for Chinese Linguistics
Peking University
{yeyvajie,ws}@pku.edu.cn

Abstract

A key problem in processing graph-based
meaning representations is graph parsing, i.e.
computing all possible derivations of a given
graph according to a (competence) grammar.
We demonstrate, for the first time, that exact
graph parsing can be efficient for large graphs
and with large Hyperedge Replacement Gram-
mars (HRGs). The advance is achieved by
exploiting locality as terminal edge-adjacency
in HRG rules. In particular, we highlight the
importance of 1) a terminal edge-first pars-
ing strategy, 2) a categorization of a subclass

production, a reversed direction to language under-
standing. We discuss locality in a sense of termi-
nal edge-adjacency and develop a locality-centric
complexity analysis of the de facto algorithm in-
troduced by Chiang et al. (2013). Our analysis
motivates (1) a terminal edge-first parsing strategy,
(2) a categorization of a subclass of HRG, i.e. what
we call Weakly Regular Graph Grammar, and (3) a
computational support in the constructivist hypoth-
esis in theoretical linguistics. Altogether, our anal-
ysis leads to a substantial improvement in practical
graph parsing. An MR with the number of concep-

18



Last Week (ACL 2020)

Semantic Parsing for English as a Second Language

Yuanyuan Zhao'?, Weiwei Sun

, Junjie Cao'* and Xiaojun Wan'

!Wangxuan Institute of Computer Technology, Peking University
'The MOE Key Laboratory of Computational Linguistics, Peking University
2Academy for Advanced Interdisciplinary Studies, Peking University
3Center for Chinese Linguistics, Peking University
{zhao_yy,ws,wanxiaojun}@pku.edu.cn
junjie.junjiecaolalibaba-inc.com

Abstract

This paper is concerned with semantic pars-
ing for English as a second language (ESL).
Motivated by the theoretical emphasis on the
learning challenges that occur at the syntax-
semantics interface during second language
acquisition, we formulate the task based on
the divergence between literal and intended
meanings. We combine the complementary
strengths of English Resource Grammar, a
linguistically-precise hand-crafted deep gram-
mar, and TLE, an existing manually annotated
ESL UD-TreeBank with a novel reranking

ena (Gass, 2013). This direction has been re-
cently explored by the NLP community (Nagata
and Sakaguchi, 2016; Berzak et al., 2016a; Lin
etal., 2018).

Different from standard English, ESL may pre-
serve many features of learners’ first languages'.
The difference between learner texts and bench-
mark training data, e.g. Penn TreeBank (PTB;
Marcus et al., 1993), is more related to linguis-
tic competence, rather than performance (Chom-
sky, 2014). This makes processing ESL different
from almost all the existing discussions on domain

19



Kind of a Reference Task (

Linguistic Knowledge and Transferability of Contextual Representations

Nelson F. Liu*"*
Matthew E. Peters*

Matt Gardner®

Yonatan Belinkov®
Noah A. Smith**

#Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA, USA
“Department of Linguistics, University of Washington, Seattle, WA, USA
* Allen Institute for Artificial Intelligence, Seattle, WA, USA
OHarvard John A. Paulson School of Engineering and Applied Sciences and
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
{nfliu, nasmith}@cs.washington.edu

{mattg, matthewp}@allenai .org,
Abstract

Contextual word representations derived from
large-scale neural language models are suc-
cessful across a diverse set of NLP tasks,
suggesting that they encode useful and trans-
ferable features of language. To shed light
on the linguistic knowledge they capture, we
study the representations produced by sev-
eral recent pretrained contextualizers (variants
of ELMo, the OpenAl transformer language
model, and BERT) with a suite of sixteen di-
verse probing tasks. We find that linear mod-
els trained on top of frozen contextual repre-

belinkov@seas.harvard.edu

Predicted Labels \ \ o

(e.g., POS tags)

Probing Model

Contextual Word
Representations

Pretrained Contextualizer

t

Haag

Input Tokens Ms.
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plays
Figure 1: An illustration of the probing model setup

used to study the linguistic knowledge within contex-
tual word representations.
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Kind of a Reference Task (AAAI 2020)

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

Establishing Strong Baselines for the New Decade:
Sequence Tagging, Syntactic and Semantic Parsing with BERT

Han He
Computer Science
Emory University

Atlanta GA 30322, USA
han.he @emory.edu

Abstract

This paper presents new state-of-the-art models for three tasks,
part-of-speech tagging, syntactic parsing, and semantic pars-
ing, using the cutting-edge contextualized embedding frame-
work known as BERT. For each task, we first replicate and
simplify the current state-of-the-art approach to enhance its
model efficiency. We then evaluate our simplified approaches
on those three s using token embeddings generated by
BERT. 12 datasets in both English and Chinese are used for
our experiments. The BERT models outperform the previously
best-performing models by 2.5% on average (7.5% for the
most significant case). All models and source codes are avail-
able in public so that researchers can improve upon and utilize

provide a dedicated error analysis and extensive dissections in

Jinho D. Choi

Computer Science

Emory University
Atlanta GA 30322, USA
jinho.choi@emory.edu

on 3.3B word corpus. After scaling the model size to hun-
dreds of millions parameters, BERT brings markedly huge
improvement to a wide range of tasks without substantial
task-specific modifications.

In this paper, we verify the effectiveness and conciseness
of BERT by first generating token-level embeddings from
it, then integrating them to task-oriented yet efficient model
structures (Section 3). With careful investigation and engi-
neering, our simplified models significantly outperform many
of the previous state-of-the-art models, achieving the highest
scores for 11 out of 12 datasets (Section 4).

To the best of our knowledge, it is the first work that tightly
integrates BERT embeddings to these three downstream tasks
and present such high performance. All our resources includ-

ina tha madale and tha canrea rndac ara anhlicly availahla |
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Compatibility, Comparison, Competition

Joint Work with Linképing, Prague, and Yusuke Miyao

» Three parallel semantic annotations over the venerable WSJ text;
> sentence- and token-aligned (PTB tokenization, Unicode punctuation);
» bi-lexical DM: DELPH-IN MRS-Derived Bi-Lexical Dependencies;
» SemEval 2014 & 2015 parsing shared tasks; reference release via LDC;
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Joint Work with Brandeis & Colorado, Jerusalem, and Groningen

» Beyond bi-lexical simplifications: general (directed) semantic graphs;

> relate to perceived ‘mainstream’: Abstract Meaning Representation;

» a ‘new kid" on the block: Universal Conceptual Cognitive Annotation;

— Meaning Representation Parsing (MRP) tasks at CoNLL 2019 and 2020:
http://mrp.nlpl.eu


http://sdp.delph-in.net
http://mrp.nlpl.eu

Brief Genealogy of ERS Simplifications

Native Interface: Minimal Recursion Semantics (Copestake et al., 2005)

» Logic-inspired tradition in (computational) natural language semantics;
» designer ‘logic’ for scope underspecification: labeled tree fragments;
» grammar provides (highly) partial information about possible scopings;

» downstream usages (so far) predominantly on unscoped representations.
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Native Interface: Minimal Recursion Semantics (Copestake et al., 2005)

» Logic-inspired tradition in (computational) natural language semantics;
» designer ‘logic’ for scope underspecification: labeled tree fragments;
» grammar provides (highly) partial information about possible scopings;

» downstream usages (so far) predominantly on unscoped representations.

, (Mostly) Graph-Based Alternate Renderings

2000 K2Y  Callmeier & Flickinger (Driving up to Napa Valley)

2002 EDS  Variable-free dependency graph (Oepen & Lgnning, 2006)
2009 DMRS Extend EDS with underspedified scope (Copestake, 2009)
2012 DM  Reduce EDS to bi-lexical form (Ivanova et al., 2012)




(0) Two Bi-Lexical Frameworks: DM & PSD

DM: DELPH-IN MRS Bi-Lexical Dependencies (Ivanova et al., 2012)

» Simplification from underspecified logical forms (ERS; coming later);

&) (ARG (ARG3)
)
A,
a similar almost impossible apply other
DT JJ NN RB JJ VB JJ NNS

q a_to n a a_for v_to a n
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SDP 2014 (Task 8 at SemEval): Nine Teams

SemEval 2014 Task 8:
Broad-Coverage Semantic Dependency Parsing

Stephan Oepen*#, Marco Kuhlmann®, Yusuke Miyao®, Daniel Zeman®,
Dan Flickinger®, Jan Haji¢°, Angelina Ivanova®, and Yi Zhang*
* University of Oslo, Department of Informatics
* Potsdam University, Department of Linguistics
 Linkoping University, Department of Computer and Information Science

< National Institute of Informatics, Tokyo

© Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics
* Stanford University, Center for the Study of Language and Information
* Nuance Communications Aachen GmbH

sdp-organizers@emmtee.net

Abstract Unfortunately, tree-oriented parsers are ill-suited

for producing meaning representations, i.e. mov-

Task 8 at SemEval 2014 defines Broad- ing from the analysis of grammatical structure to
Coverage Semantic Dependency Pars- sentence semantics. Even if syntactic parsing ar-
ing (SDP) as the problem of recovering guably can be limited to tree structures, this is not
sentence-internal predicate-argument rela- the case in semantic analysis, where a node will
tionships for all content words, i.e. the se- often be the argument of multiple predicates (i.e.
mantic structure constituting the relational have more than one incoming arc), and it will often
core of sentence meaning. In this task be desirable to leave nodes corresponding to se-
decerintinn we nacitinn the nrohlem in B VR DA
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SDP 2016 (Task 18 at SemEval): Six Teams

SemEval 2015 Task 18:
Broad-Coverage Semantic Dependency Parsing

Stephan Oepen**, Marco Kuhlmann®, Yusuke Miyao®, Daniel Zeman®,
Silvie Cinkova®, Dan Flickinger®, Jan Haji¢°, and Zdeiika UreSova°®

* University of Oslo, Department of Informatics
# Potsdam University, Department of Linguistics
@ Linkoping University, Department of Computer and Information Science
< National Institute of Informatics, Tokyo
© Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics
* Stanford University, Center for the Study of Language and Information

sdp-organizers@emmtee.net

Abstract

Task 18 at SemEval 2015 defines Broad-
Coverage Semantic Dependency Parsing (SDP)
as the problem of recovering sentence-internal
predicate—argument relationships for all con-
tent words, i.e. the semantic structure consti-
tuting the relational core of sentence meaning.
In this task description, we position the prob-
lem in comparison to other language analysis
sub-tasks, introduce and compare the semantic

more general graph processing, to thus enable a more
direct analysis of Who did What to Whom?
Extending the very similar predecessor task
SDP 2014 (Oepen et al., 2014), we make use of three
distinct, parallel semantic annotations over the same
common texts, viz. the venerable Wall Street Journal
(WSJ) and Brown segments of the Penn Treebank
(PTB; Marcus et al., 1993) for English, as well as
comparable resources for Chinese and Czech. Fig-
ure 1 below shows example target representations,
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High-Level Goals of the MRP Shared Tasks

Cross-Framework Comparability and Interoperability

» Vast, complex landscape of representing natural language meaning;

» diverse linguistic traditions, modeling assumptions, levels of ambition;
» some differences are superficial (e.g. terminology), others run deeper;

— clarify concepts and terminology; unify representations and evaluation.
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High-Level Goals of the MRP Shared Tasks

Cross-Framework Comparability and Interoperability

» Vast, complex landscape of representing natural language meaning;
» diverse linguistic traditions, modeling assumptions, levels of ambition;
» some differences are superficial (e.g. terminology), others run deeper;

— clarify concepts and terminology; unify representations and evaluation.

Parsing into Graph-Structured Representations

» Cottage industry of parsers with output structures beyond rooted trees;
» different families: factorization, transitions, composition, ‘translation’;
» much framework-internal evolution: design reflects specific assumptions;

— evaluate across frameworks; learning from complementary knowledge.

Learning from Complementary Knowledge

» Cross-Framework Perspective: Seek commonality and complementarity.

N
i



Graph Theory 101

G=(N,E,T)

» G is a directed graph: NN is set of nodes; E C N x N is set of edges;
» T C N is possibly empty set of top node(s): the ‘main’ predicate(s);
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Graph Theory 101

G=(N,E,T)

G is a directed graph: N is set of nodes; E C N x N is set of edges;

T C N is possibly empty set of top node(s): the ‘main’ predicate(s);

in- and out-degree of n € N count edges to and from n; in = 0: root;
top in Abrams arrived quickly. is arrive, but can be argument of quick;
semantic graphs often multi-rooted: rootness just a structural property;
a node n is reentrant if in(n) > 1 (shared argument across predicates);
cycles can occur: directed path from m to n and (‘back’) from n to m;

G is connected if there is an undirected path between all pairs of nodes;

vV vV vV vV vV vV Vv VvVY

G is a tree if |[T'| = 1 and there is a unique path to all other nodes.
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Anchoring in the Surface String

Relating Pieces of Meaning to the Linguistic Signal

» Intuitively, sub-structures of meaning relate to sub-parts of the input;

» semantic frameworks vary in how much weight to put on this relation;
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(0) bilexical DM, PSD  nodes are sub-set of surface tokens
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(2)  unanchored AMR no explicit sub-string correspondences



Anchoring in the Surface String

Relating Pieces of Meaning to the Linguistic Signal

Intuitively, sub-structures of meaning relate to sub-parts of the input;
semantic frameworks vary in how much weight to put on this relation;
anchoring of graph elements in sub-strings of the underlying utterance;
can be part of semantic annotations or not; can take different forms;
hierarchy of anchoring types: Flavor (0)—(2); bilexical graphs strictest;

anchoring central in parsing, explicit or latent; aka ‘alignment’ for AMR;

vV VvV V. VvV VY

relevant to at least some downstream tasks; should impact evaluation.

Flavor Name Example Type of Anchoring

(0) bilexical DM, PSD  nodes are sub-set of surface tokens
(1) anchored EDS, UCCA free node—sub-string correspondences

(2)  unanchored AMR no explicit sub-string correspondences



(1) Elementary Dependency Structures (EDS)

Break Free of Bi-Lexical Limitations (Oepen & Lgnning, 2006)

» Decomposition or construction meaning; anchors: arbitrary sub-strings.



(1) Elementary Dependency Structures (EDS)

Break Free of Bi-Lexical Limitations (Oepen & Lgnning, 2006)

» Decomposition or construction meaning; anchors: arbitrary sub-strings.

_almost_a_1
(23:29)

ARG1

_impossible_a_for
(30:40)

A similar technique is almost impossible to apply to other crops.



(1) Universal Conceptual Cognitive Annotation (UCCA)

Multi-Layered Design (Abend & Rappoport, 2013);

> Tree backbone: semantic ‘constituents’ are scenes (‘clauses’) and units;

(59:65)

A similar technique is almost impossible to apply to other crops.
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(1) Universal Conceptual Cognitive Annotation (UCCA)

Multi-Layered Design (Abend & Rappoport, 2013);

> Tree backbone: semantic ‘constituents’ are scenes (‘clauses’) and units;

» scenes (Process or State): pArticipants and aDverbials (plus F and U);

> complex units distinguish Center and Elaborator(s); allow remote edges.

(59:65)

A similar technique is almost impossible to apply to other crops.
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(2) Abstract Meaning Representation (AMR)

Banarescu et al. (2013)

possible-01

|polarity - | > Abstractly (if not linguistically)

similar to EDS, but unanchored;
mod (domain)\ARG1

apply-02

> verbal senses from PropBank™™;
> negation as node-local property;

» tree-like annotation: inversed
edges normalized for evaluation;

(ARG1)-of
resemble-01

A similar technique is almost impossible to apply to other crops.

mod (domain)  » originally designed for (S)MT;
various NLU applications to date.



MRP 2019 (CoNLL Shared Task): Eighteen Teams

MRP 2019: Cross-Framework Meaning Representation Parsing

Stephan Oepen*, Omri Abend®, Jan Haji¢”, Daniel Hershcovich®, Marco Kuhlmann®,
Tim O’Gorman*, Nianwen Xue®, Jayeol Chun®, Milan Straka®, and Zderika UreSova®
b University of Oslo, Department of Informatics
* The Hebrew University of Jerusalem, School of Computer Science and Engineering
© Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics
© University of Copenhagen, Department of Computer Science
° Linkdping University, Department of Computer and Information Science
* University of Colorado at Boulder, Department of Linguistics
* Brandeis University, Department of Computer Science
mrp-organizers@nlpl.eu,
jchun@brandeis.edu, {straka|uresova}@Qufal.mff.cuni.cz

Abstract Representation Parsing (MRP 2019). The goal
of the task is to advance data-driven parsing into
graph-structured representations of sentence mean-
ing. For the first time, this task combines formally
and linguistically different approaches to meaning

The 2019 Shared Task at the Conference for
Computational Language Learning (CoNLL)
was devoted to Meaning Representation Pars-
ing (MRP) across frameworks. Five distinct

approaches to the representation of sentence representation in graph form in a uniform train-
meaning in the form of directed graphs were ing and evaluation setup. Participants were invited
represented in the training and evaluation data to develop parsing systems that support five dis-
for the task, packaged in a uniform graph ab- tinct semantic graph frameworks (see §3 below)—
ctraction and carialization  The tack recaived P B .
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Training and Evaluation Data in the Shared Task

DM PSD EDS UCCA AMR
Flavor 0 0 1 1 2

- Text Type newspaper newspaper newspaper  mixed mixed
‘®  Sentences 35,656 35,656 35,656 6,572 56,240
e Tokens 802,717 802,717 802,717 138,268 1,000,217
- Text Type mixed mixed mixed mixed mixed
$ Sentences 3,359 3,359 3,359 1,131 1,998
= Tokens 64,853 64,853 64,853 21,647 39,520

» DM, PSD, and EDS annotate the same text (Sections 00—-20 of WSJ);
» UCCA: samples of EWT & Wikipedia; AMR: twelve different sources;
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Training and Evaluation Data in the Shared Task

DM PSD EDS UCCA AMR
Flavor 0 0 1 1 2

- Text Type newspaper newspaper newspaper  mixed mixed
‘®  Sentences 35,656 35,656 35,656 6,572 56,240
e Tokens 802,717 802,717 802,717 138,268 1,000,217
- Text Type mixed mixed mixed mixed mixed
$ Sentences 3,359 3,359 3,359 1,131 1,998
= Tokens 64,853 64,853 64,853 21,647 39,520

DM, PSD, and EDS annotate the same text (Sections 00-20 of WSJ);
UCCA: samples of EWT & Wikipedia; AMR: twelve different sources;

linguistics: 100-item WSJ sample in all frameworks publicly available;

vV vV v v

evaluation: subset of 100 sentences from The Little Prince is public.
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Graphbank Statistics (Kuhlmann & Oepen, 2016)

DM PSD EDS UCCA AMR™!

» (01) number of graphs 35,656 35,656 35,656 6,572 56,240
€ (01) number of tokens 802,717 802,717 802,717 138,268 1,000,217
g (02) average number of tokens 22,51 2251 2251  21.03 17,78
(03) average nodes per token 0.77 0.64 1.29 1.37 0.65
(04) number of edge labels 59 90 10 15 101
(05) %, trees 2.31 42.26 0.09 34.83 22.24
(06) %, treewidth one 69.82 43.08 68.99 41.57 50.00
(07) average treewidth 1.30 1.61 1.31 1.61 1.56
@ (08) maximal treewidth 3 7 3 4 5
2 (09) average edge density 1.019 1.073 1.015 1.053 1.092
® (10) %n reentrant 27.43 11.41 32.78 4.98 19.89
5 (11) %, cyclic 000 000 012  0.00 0.38
(12) % not connected 6.57 0.70 1.74 0.00 0.00
(13) %, multi-rooted 97.47 4060  99.93  0.00  71.37
(14) percentage non-top roots 44.94 434 5485 0.00 20.09
+ (15) average edge length 2.684  3.320 - - -
% (16) %, noncrossing 69.21  64.61 - - -
S

(17) %4 pagenumber two 99.59  98.08 - - -
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$ (10) %, reentrant 27.43 11.41 32.78 4.98 19.89
5 (11) %, cyclic 000 000 012  0.00 0.38
(12) % not connected 6.57 0.70 1.74 0.00 0.00
(13) %, multi-rooted 97.47  40.60 99.93 000  71.37
(14) percentage non-top roots 44.94 434 5485 0.00 20.09
+ (15) average edge length 2.684  3.320 - - -
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Cross-Framework Evaluation: MRP Graph Similarity

» Break down graphs into types of information: per-type and overall Fy;

Different Types of Semantic Graph ‘Atoms’

DM PSD EDS UCCA AMR

_retire_v_1 proper_q
(7:14) (0:6)

|CARG Pierre|
(0:6)

Top Nodes v
Labeled Edges v
Node Labels v
Node Properties v
Node Anchoring v
Edge Attributes X

ENANENLNEN
EINENENENEN
ANENESESENEN
R SNENLNEN

Pierre retired.
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I v v vy

smart initialization, scheduling, and pruning yield strong approximation.
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Comparison to Top-Performing Data-Driven Parsers

Tops Labels Properties Anchors Edges

PR F PRF PRF PRF PR F

ERG .92 .92 918 .99 .99 .987 .96 .96 .956 .99 .99 .994 .91 .91 .912

SJTU-NICT .93 .93 .933 .95 .95 .949 .96 .95 .955 .99 .99 .993 .93 .92 .924

g HIT-SCIR .93 .93 1926 .93 .93 .930 .95 .95 .953 .99 .99 .993 .93 .92 .925
SUDA-Alibaba .91 .91 .911 .90 .91 .903 .91 .92 .915 .97 .99 .982 .89 .91 .898
Peking .93 .93 927 .92 .91 915 .95 .94 945 .99 .99 .991 .92 .92 .924
ERG .90 .90 .902 .97 .96 .965 .96 .96 .960 .96 .96 .963 .93 .93 .929
SUDA-Alibaba .90 .90 .899 .91 .91 .912 .89 .91 .897 .95 .95 .949 .90 .90 .897

‘8 HIT-SCIR .88 .82 .852 .90 .89 .894 .89 .91 .895 .95 .94 .943 .89 .88 .888

w

SJTU-NICT .91 .85 .877 .93 .86 .894 .79 .76 .775 .97 .90 .934 .95 .82 .878

Peking .83 .83 .829 .95 .94 946 .91 .96 .936 .96 .96 .961 .94 .93 .933
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Teams DM PSD EDS UCCA AMR MTL Approach
ERGHST v X v X X X Composition
TUPAST v v v v v X/ Transition
HIT-SCIR v v v v v X Transition
SJTU-NICT v v v v v X Factorization
SUDA-Alibaba v 4 v v v (v)  Factorization
Saarland v v v v v X Composition
Hitachi v v v v v (V)  Factorization
UFAL MRPipe v v v v v X Transition
ShanghaiTech v v v X v X Factorization
Amazon v v X X v X Factorization
JBNU v v X v X X Factorization
SJTU v v v v v v Transition
UFAL-Oslo v v v v v X Transition
HKUST v v X v X ?

Bocharov X X X X v ?

Peking!f v v v v X X Factorization
CUHKS v v v v v v Transition
Anonymous® X v X X X ?

High-Level Overview of Submissions
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Score Distributions: Top Systems

1

Composition
S O
A ?
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Overall DM PSD EDS UCCA AMR
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EDSs are ‘Radically Compositional’
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EDSs are ‘Radically Compositional’

7 N
ARG2 ARG1 l
, LY

Pierre Vinken

ARG1

v

/ \ARGZ
S

on Monday
< ARGl —
7/ N
ARG2 ARG3
» A

thirty-two

Named Entities

» Underspecified structure in names;

» few, lexically determined sub-types.
Michelle and Barack Obama

Prepositions (and Similar)
» Predicates: distinct two-place relation;
» specialized sub-senses as appropriate.

before and during the meeting

Literal Numbers

> syntax yields arithmetic expressions;
» trivial ‘downstream’ normalization.

ten to twenty thousand
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