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Vector Space Models for Sentences?

Every picture tells a story

� Composition? Logic?

� Long history of attempts...

� Rethink fundamentals → why vectors?
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Words are not Entities

� Fundamental distinction between:

� Words

� Entities they refer to

� Meaning as a function over entities
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Summary So Far

� Pixie: feature representation of an entity

� Word meanings as functions:
pixie 7→ probability of truth
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Sentences as Graphs (DMRS)

Every picture tells a story

′

RSTR

ARG1

RSTR

ARG2

∀x∃y∃z picture(x)⇒ [story(z)∧ tell(y)
∧ ARG1(y,x)∧ ARG2(y, z) ]

� See: “Linguists Who Use Probabilistic Models Love Them:
Quantification in Functional Distributional Semantics” (PaM2020)
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World Model

∈{0,1}N

� Cardinality Restricted Boltzmann Machine
(CaRBM; Swersky et al., 2012)

� P (s) ∝ exp
�

−E(s)
�
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Lexical Model

� Feedforward networks

� t(r)(x) = σ
�

v
(r)
i xi

�

� P (r |x) ∝ t(r)(x)

V

R
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Gradient Descent

∂
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logP (g) =

�

Es|g − Es
�

�

∂

∂θ

�

−E(s)
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logP (g | s)

�

� Latent variables necessary but inconvenient

� Approximate distribution: variational inference
(Jordan et al., 1999; Attias, 2000)
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Variational Inference
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Amortised Variational Inference

� Variational distribution must be optimised
for each input graph

� Amortisation: train a network to predict the
variational distribution (Kingma and Welling, 2014;
Rezende et al., 2014; Mnih and Gregor, 2014)

� Input graphs of different topologies: share network
weights with graph convolutions
(Duvenaud et al., 2015; Marcheggiani and Titov, 2017)
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Amortised Variational Inference
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Gradient Descent
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� Latent variables: amortised variational inference

� Additional details... regularisation, dropout, β-VAE weighting,
negative sampling, probit approximation, learning rate,
warm start, soft constraints, belief propagation for Es...
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Pixie Autoencoder

� Generative model & inference network

� NLP interest:

� Truth-conditional distributional semantics

� General ML interest:

� Efficient inference for latent variables
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Training Needs Graphs

� Training needs dependency graphs, not raw text

� WikiWoods

� English Wikipedia, parsed into DMRS graphs

� 31 million graphs (after preprocessing)
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Similarity in Context (GS2011)

student write name

student spell name

scholar write book

scholar spell book
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BERT for GS2011

Pseudo-logical form: (employer provide training)

� “an employer provides training .”
� “employer provides training .”
� “an employer provides a training .”
� “a employer provides a training .”
� “employers provide training .”
� “employers provide trainings .”
� “training is provided by an employer .”
� “trainings are provided by employers .”
� ...

24



Pixie Autoencoder for GS2011
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GS2011 Results

Model Correlation

Skip-gram (vector addition) .348
BERT (with tuned template strings) .446
Pixie Autoencoder .504

� Smaller model, less data, better performance

� More results in the paper!
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Summary

� Meanings: functions

� Sentences: graphs

� Inference: graph convolutions

� Logic: useful
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Linguists who use Probabilistic Models
Love Them

Quantification in Functional Distributional Semantics

Guy Emerson
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Overview

� Probabilistic quantification

� Generic quantification

� Bonus: donkey anaphora
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Generalised Quantifier Theory

� A quantifier has a restriction R and body B

� For example:

� Some dog barked.

� Every dog barked.

� No dog barked.

� Most dog barked.
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Generalised Quantifier Theory

� A quantifier has a restriction R and body B

� Truth defined in terms of sizes of sets:

� Some: |R ∩ B| > 1

� Every: |R ∩ B| = |R|
� No: |R ∩ B| = 0

� Most: |R ∩ B| > 1
2 |R|
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Probabilistic Quantifiers

� P (B |R) =
P (R,B)

P (R)

� Truth defined in terms of probabilities:

� Some: P (B |R) > 0

� Every: P (B |R) = 1

� No: P (B |R) = 0

� Most: P (B |R) > 1
2
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Probabilistic Quantifiers

some every no most

few many
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Probabilistic Quantifiers

X

R B

Q
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Scope Trees

∀(x)

picture(x) ∃(z)

story(z) ∃(y)

> tell(y)∧ ARG1(y,x)∧ ARG2(y, z)
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Probabilistic Scope Trees

∀(x)

picture(x) ∃(z)

story(z) ∃(y)

> tell(y)∧ ARG1(y,x)∧ ARG2(y, z)

Y ZX
ARG2ARG1

Tα,X Tβ,Y Tγ,Z

∃(Y)

∃(Z)

∀(X)
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Generics

� Dogs bark

� Ducks lay eggs

� Mosquitoes carry malaria
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Generic Puzzle

� Generics vs. classical quantifiers:

� Harder to define mathematically

� Easier for children to acquire

� Proposal: computationally simpler
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Rational Speech Acts

� Communication as a cooperative game:

� Speaker knows something; listener does not

� Speaker chooses to say something

� Listener must infer what the speaker knows

� Inference as Bayesian inference
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Rational Speech Acts

� Communication as a cooperative game:

� Literal listener: infer based on truth

� Pragmatic speaker: optimise choice for literal
listener

� Pragmatic listener: infer based on pragmatic
speaker
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Rational Speech Acts

0

1
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RSA for Generics (Tessler and Goodman, 2019)

� Semantically simple

� Increasing ratio, increasing probability

� P (Q) = P (B |R)

� Pragmatically dependent on prior knowledge

� Dogs bark

� Ducks lay eggs

� Mosquitoes carry malaria
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Probabilistic Quantifiers

some every no most

GEN

18



Computational Cost of Quantification

� Classical quantifiers are sensitive to probabilities
being exactly 0 or 1

� A vague predicate has to be seen as a
distribution over precise predicates

� Summing over this distribution is expensive

� GEN doesn’t need precise predicates

� GEN can be lazy! Easier to compute!
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Bonus: Donkey Anaphora

� Every farmer who owns a donkey feeds it

� Farmers who own donkeys feed them

� Linguists who use probabilistic models love them

� Mosquitoes which bite birds infect them with malaria
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Bonus: Donkey Anaphora
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R
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Summary

� Quantification: conditional probability

� Generics: lazy probabilistic quantification

� Donkey anaphora: generic quantification
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Classical Donkeys
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