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Vector Space Models for Sentences?

VoL =2 L

Every picture tells story

= Composition? Logic?
= Long history of attempts...
= Rethink fundamentals — why vectors?
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» Fundamental distinction between:
= Words
= Entities they refer to

= Meaning as a function over entities
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Overview
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Functions, not vectors

Probabilistic graphical model

NEW: Amortised variational inference

NEW: Experimental results
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Summary So Far
S

= Pixie: feature representation of an entity

= Word meanings as functions:
pixie — probability of truth
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Sentences as Graphs (DMRS)

ARG1 ARG2

v picture tell 3 story
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RSTR RSTR

Vx3y3z picture(x) = [story(z) A tell(y)
A ARGL(Y, X) A ARG2(Y, Z)]

= See: “Linguists Who Use Probabilistic Models Love Them:

Quantification in Functional Distributional Semantics” (PaM2020) 9
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World Model

= Cardinality Restricted Boltzmann Machine
(CaRBM; Swersky et al., 2012)

= P(s) o exp (—E(s))
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World Model

= Cardinality Restricted Boltzmann Machine
(CaRBM; Swersky et al., 2012)
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Lexical Model

= Feedforward networks
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Lexical Model

= Feedforward networks
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9 logP (g) = ([Eslg — [Es) [% (_E(S))]

06
0

= Latent variables necessary but inconvenient

= Approximate distribution: variational inference

(Jordan et al., 1999; Attias, 2000)
14
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Variational Inference
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Amortised Variational Inference

= Variational distribution must be optimised
for each input graph

= Amortisation: train a network to predict the
variational distribution (Kingma and Welling, 2014;
Rezende et al., 2014; Mnih and Gregor, 2014)

= Input graphs of different topologies: share network
weights with graph convolutions
(Duvenaud et al., 2015; Marcheggiani and Titov, 2017)

17
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Amortised Variational Inference
S S

) d
ﬁD(@l[P) = — Q[E@(S) [Iog [FD(S)]
— %[E@(s) [IogP (gls) ]

0
— ﬁH(Q)

19



Gradient Descent
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» Latent variables: amortised variational inference

20



Gradient Descent
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9 logP (g) = ([Eslg — [Es) [69 ( E(S))]
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d
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= Latent variables: amortised variational inference

= Additional details... regularisation, dropout, B-VAE weighting,
negative sampling, probit approximation, learning rate,
warm start, soft constraints, belief propagation for k... 20
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Pixie Autoencoder
-~ !

» Generative model & inference network

= NLP interest:
= Truth-conditional distributional semantics

= General ML interest:
m Efficient inference for latent variables

21
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Training Needs Graphs

= Training needs dependency graphs, not raw text

= WikiWoods
= English Wikipedia, parsed into DMRS graphs
= 31 million graphs (after preprocessing)

22



Similarity in Context (GS52011)
N

student write name
student  spell name

scholar  write book
scholar spell book
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BERT for GS2011

Pseudo-logical form: (employer provide training)

“an employer provides training .”
“employer provides training .”

“an employer provides a training .”

“a employer provides a training .”
“employers provide training .”
“employers provide trainings .”
“training is provided by an employer .”
“trainings are provided by employers .”
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Pixie Autoencoder for GS2011
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Pixie Autoencoder for GS2011

25



GS2011 Results

Model Correlation
Skip-gram (vector addition) .348
BERT (with tuned template strings) 446
Pixie Autoencoder 504
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GS2011 Results

Model Correlation
Skip-gram (vector addition) .348
BERT (with tuned template strings) 446
Pixie Autoencoder 504

= Smaller model, less data, better performance

= More results in the paper!
26



Summary
S

= Meanings: functions
= Sentences: graphs
= Inference: graph convolutions

= Logic: useful
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Linguists who use Probabilistic Models

Love Them

Quantification in Functional Distributional Semantics

Guy Emerson
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Sentences as Graphs (DMRS)

ARG1 ARG2

\ picture tell 3 story
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RSTR RSTR

Vx3y3z picture(x) = [story(z) A tell(y)
A ARG1(Y, X) A ARG2(Y, 2)]



Overview
S S

= Probabilistic quantification
= Generic quantification

= Bonus: donkey anaphora
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Generalised Quantifier Theory
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= A quantifier has a restriction R and body B

= For example:

Some dog barked.

Every dog barked.
No dog barked.
Most dog barked.



Generalised Quantifier Theory
S

= A quantifier has a restriction R and body B

= Truth defined in terms of sizes of sets:
= Some: |[RNnB|>1
= Every: |[RNB|= IRI
= No: RN B| =

Most: |RNB|> %IRI



Probabilistic Quantifiers
-~ !
P (R, B)

= P(B|R) = PR

= Truth defined in terms of probabilities:

= Some: P(B|R)>0
m Every: P(B|R)=1
= No: P(B|R)=0
= Most: P(B|R) > %
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Scope Trees

V(x)
/\
picture(x) d(2)
/\
story(z) A(y)

/\

T tellly) A ARGL(Y, X) A ARG2(Y, 2)
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Probabilistic Scope Trees

v(x)
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= Dogs bark
= Ducks lay eggs

= Mosquitoes carry malaria
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Rational Speech Acts

= Communication as a cooperative game:

Speaker knows something; listener does not

Speaker chooses to say something

Listener must infer what the speaker knows

Inference as Bayesian inference

13
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14



Rational Speech Acts

= Communication as a cooperative game:
= Literal listener: infer based on truth

= Pragmatic speaker: optimise choice for literal
listener

14



Rational Speech Acts

= Communication as a cooperative game:
= Literal listener: infer based on truth

= Pragmatic speaker: optimise choice for literal
listener

= Pragmatic listener: infer based on pragmatic
speaker

14



Rational Speech Acts
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RSA for Generics (Tessler and Goodman, 2019)
e

= Semantically simple
= Increasing ratio, increasing probability
= P(Q)=P(BIR)

16



RSA for Generics (Tessler and Goodman, 2019)
e

= Semantically simple
= Increasing ratio, increasing probability
= P(Q)=P(BIR)

= Pragmatically dependent on prior knowledge
= Dogs bark
= Ducks lay eggs

= Mosquitoes carry malaria
16



Generic Puzzle
S S

= Generics vs. classical quantifiers:
= Harder to define mathematically
= Easier for children to acquire

= Proposal: computationally simpler

17



Probabilistic Quantifiers
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Computational Cost of Quantification
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= Classical quantifiers are sensitive to probabilities
being exactly O or 1
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Computational Cost of Quantification
S

= Classical quantifiers are sensitive to probabilities
being exactly O or 1

= A vague predicate has to be seen as a
distribution over precise predicates

= Summing over this distribution is expensive

= GEN doesn’t need precise predicates
= GEN can be lazy! Easier to compute!

19



Bonus: Donkey Anaphora
S

= Every farmer who owns a donkey feeds it
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Bonus: Donkey Anaphora
S

= Every farmer who owns a donkey feeds it
= Farmers who own donkeys feed them
= Linguists who use probabilistic models love them

= Mosquitoes which bite birds infect them with malaria

20



Bonus: Donkey Anaphora
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Summary
S

= Quantification: conditional probability
= Generics: lazy probabilistic quantification

= Donkey anaphora: generic quantification
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Classical Donkeys




