Autoencoding Pixies

Amortised Variational Inference with Graph Convolutions for Functional Distributional Semantics

Guy Emerson

What I'll Cover...

Meanings as *functions*, not vectors

What I'll Cover...

Meanings as *functions*, not vectors

Logically interpretable model

What I'll Cover...

- Meanings as *functions*, not vectors
- Logically interpretable model
- Outperforms BERT at semantics

Vector Space Models

Vector Space Models

Composition? Logic?

- Composition? Logic?
- Long history of attempts...
 - See: "What are the Goals of Distributional Semantics?"

- Composition? Logic?
- Long history of attempts...
- Rethink fundamentals → why vectors?

Words are not Entities

Fundamental distinction between:

- Words
- Entities they refer to

Words are not Entities

Fundamental distinction between:

- Words
- Entities they refer to
- Meaning as a function over entities

Functions, not vectors

Probabilistic graphical model

- Functions, not vectors
- Probabilistic graphical model
- NEW: Amortised variational inference
- NEW: Experimental results

Truth-Conditional Semantics

Truth-Conditional Semantics

Summary So Far

Pixie: feature representation of an entity

 Word meanings as functions: pixie → probability of truth

Every picture tells a story

 $\forall x \exists y \exists z \text{ picture}(x) \Rightarrow [\text{story}(z) \land \text{tell}(y) \\ \land \text{ARG1}(y, x) \land \text{ARG2}(y, z)]$

$$\forall x \exists y \exists z \text{ picture}(x) \Rightarrow [\operatorname{story}(z) \land \operatorname{tell}(y) \\ \land \operatorname{ARG1}(y, x) \land \operatorname{ARG2}(y, z)]$$

 See: "Linguists Who Use Probabilistic Models Love Them: Quantification in Functional Distributional Semantics" (PaM2020)

dog $\leftarrow \frac{ARG1}{C}$ chase $\xrightarrow{ARG2}$ cat

$$x \xleftarrow{\text{ARG1}} y \xrightarrow{\text{ARG2}} z$$

dog(x) chase(y) cat(z)

$$x \xleftarrow{\text{ARG1}} y \xrightarrow{\text{ARG2}} z$$

p(x) q(y) r(z)

p(X) q(Y) r(Z)

World Model

 Cardinality Restricted Boltzmann Machine (CaRBM; Swersky et al., 2012)

• $\mathbb{P}(s) \propto \exp(-E(s))$

World Model

 Cardinality Restricted Boltzmann Machine (CaRBM; Swersky et al., 2012)

•
$$\mathbb{P}(s) \propto \exp\left(\sum_{\substack{L \\ x \to y \text{ in } s}} w_{ij}^{(L)} x_i y_j\right)$$

Lexical Model

Feedforward networks

•
$$t^{(r)}(x) = \sigma(v_i^{(r)}x_i)$$
Lexical Model

Feedforward networks

•
$$t^{(r)}(x) = \sigma(v_i^{(r)}x_i)$$

•
$$\mathbb{P}(r \mid x) \propto t^{(r)}(x)$$

Functional Distributional Semantics

$$rac{\partial}{\partial heta} \log \mathbb{P}\left(g
ight) = \left(\mathbb{E}_{s \mid g} - \mathbb{E}_{s}
ight) \left[rac{\partial}{\partial heta} \left(- E(s)
ight)
ight] \ + \mathbb{E}_{s \mid g} \left[rac{\partial}{\partial heta} \log \mathbb{P}\left(g \mid s
ight)
ight]$$

$$\frac{\partial}{\partial \theta} \log \mathbb{P}(g) = \left(\mathbb{E}_{s|g} - \mathbb{E}_{s} \right) \left[\frac{\partial}{\partial \theta} \left(-E(s) \right) \right] \\ + \mathbb{E}_{s|g} \left[\frac{\partial}{\partial \theta} \log \mathbb{P}(g|s) \right]$$

$$\frac{\partial}{\partial \theta} \log \mathbb{P}(g) = \left(\mathbb{E}_{s|g} - \mathbb{E}_{s} \right) \left[\frac{\partial}{\partial \theta} \left(-E(s) \right) \right] \\ + \mathbb{E}_{s|g} \left[\frac{\partial}{\partial \theta} \log \mathbb{P}(g|s) \right]$$

Latent variables necessary but inconvenient

$$\frac{\partial}{\partial \theta} \log \mathbb{P}(g) = \left(\mathbb{E}_{s|g} - \mathbb{E}_{s} \right) \left[\frac{\partial}{\partial \theta} \left(-E(s) \right) \right] \\ + \mathbb{E}_{s|g} \left[\frac{\partial}{\partial \theta} \log \mathbb{P}(g|s) \right]$$

Latent variables necessary but inconvenient

 Approximate distribution: variational inference (Jordan et al., 1999; Attias, 2000)

Functional Distributional Semantics

Variational Inference

 Variational distribution must be optimised for each input graph

- Variational distribution must be optimised for each input graph
- Amortisation: train a network to predict the variational distribution (Kingma and Welling, 2014; Rezende et al., 2014; Mnih and Gregor, 2014)

- Variational distribution must be optimised for each input graph
- Amortisation: train a network to predict the variational distribution (Kingma and Welling, 2014; Rezende et al., 2014; Mnih and Gregor, 2014)
- Input graphs of different topologies: share network weights with graph convolutions (Duvenaud et al., 2015; Marcheggiani and Titov, 2017)

Variational Inference

$$\frac{\partial}{\partial \phi} D(\mathbb{Q}|\mathbb{P}) = -\frac{\partial}{\partial \phi} \mathbb{E}_{\mathbb{Q}(s)} \big[\log \mathbb{P}(s) \big] \\ -\frac{\partial}{\partial \phi} \mathbb{E}_{\mathbb{Q}(s)} \big[\log \mathbb{P}(g | s) \big] \\ -\frac{\partial}{\partial \phi} H(\mathbb{Q})$$

$$\frac{\partial}{\partial \theta} \log \mathbb{P}(g) = \left(\mathbb{E}_{s|g} - \mathbb{E}_{s} \right) \left[\frac{\partial}{\partial \theta} \left(-E(s) \right) \right] \\ + \mathbb{E}_{s|g} \left[\frac{\partial}{\partial \theta} \log \mathbb{P}(g|s) \right]$$

Latent variables: amortised variational inference

$$\frac{\partial}{\partial \theta} \log \mathbb{P}(g) = \left(\mathbb{E}_{s|g} - \mathbb{E}_{s} \right) \left[\frac{\partial}{\partial \theta} \left(-E(s) \right) \right] \\ + \mathbb{E}_{s|g} \left[\frac{\partial}{\partial \theta} \log \mathbb{P}(g|s) \right]$$

Latent variables: amortised variational inference

 Additional details... regularisation, dropout, β-VAE weighting, negative sampling, probit approximation, learning rate, warm start, soft constraints, belief propagation for E_s...

Pixie Autoencoder

Generative model & inference network

Pixie Autoencoder

- Generative model & inference network
- NLP interest:
 - Truth-conditional distributional semantics

Pixie Autoencoder

- Generative model & inference network
- NLP interest:
 - Truth-conditional distributional semantics
- General ML interest:
 - Efficient inference for latent variables

Training Needs Graphs

Training needs dependency graphs, not raw text

Training Needs Graphs

- Training needs dependency graphs, not raw text
- WikiWoods
 - English Wikipedia, parsed into DMRS graphs
 - 31 million graphs (after preprocessing)

Similarity in Context (GS2011)

student write name student spell name

scholar write book scholar spell book

BERT for GS2011

Pseudo-logical form: (employer provide training)

- "an employer provides training ."
- "employer provides training ."
- "an employer provides a training ."
- "a employer **provides** a training ."
- "employers provide training ."
- "employers provide trainings ."
- "training is provided by an employer ."
- "trainings are provided by employers ."

Pixie Autoencoder for GS2011

Pixie Autoencoder for GS2011

GS2011 Results

Model	Correlation
Skip-gram (vector addition)	.348
BERT (with tuned template strings)	.446
Pixie Autoencoder	.504

GS2011 Results

Model	Correlation
Skip-gram (vector addition)	.348
BERT (with tuned template strings)	.446
Pixie Autoencoder	.504

Smaller model, less data, better performance

GS2011 Results

Model	Correlation
Skip-gram (vector addition)	.348
BERT (with tuned template strings)	.446
Pixie Autoencoder	.504

Smaller model, less data, better performance

More results in the paper!

Summary

- Meanings: functions
- Sentences: graphs
- Inference: graph convolutions
- Logic: useful

Linguists who use Probabilistic Models Love Them

Quantification in Functional Distributional Semantics

Sentences as Graphs (DMRS)

Every picture tells a story

Sentences as Graphs (DMRS)

Sentences as Graphs (DMRS)

$\forall x \exists y \exists z \text{ picture}(x) \Rightarrow [\text{story}(z) \land \text{tell}(y) \\ \land \text{ARG1}(y, x) \land \text{ARG2}(y, z)]$

- Probabilistic quantification
- Generic quantification
- Bonus: donkey anaphora

Generalised Quantifier Theory

• A quantifier has a *restriction* \mathcal{R} and *body* \mathcal{B}

Generalised Quantifier Theory

- A quantifier has a restriction R and body B
- For example:
 - Some dog barked.
 - Every dog barked.
 - No dog barked.
 - Most dog barked.
Generalised Quantifier Theory

- A quantifier has a restriction R and body B
- Truth defined in terms of sizes of sets:
 - Some: $|\mathcal{R} \cap \mathcal{B}| > 1$
 - Every: $|\mathcal{R} \cap \mathcal{B}| = |\mathcal{R}|$
 - No: $|\mathcal{R} \cap \mathcal{B}| = 0$
 - Most: $|\mathcal{R} \cap \mathcal{B}| > \frac{1}{2}|\mathcal{R}|$

•
$$\mathbb{P}(B|R) = \frac{\mathbb{P}(R,B)}{\mathbb{P}(R)}$$

- Truth defined in terms of probabilities:
 - Some: $\mathbb{P}(B|R) > 0$
 - *Every*: $\mathbb{P}(B|R) = 1$
 - No: $\mathbb{P}(B|R) = 0$

• *Most*: $\mathbb{P}(B|R) > \frac{1}{2}$

Scope Trees

Probabilistic Scope Trees

- Dogs bark
- Ducks lay eggs
- Mosquitoes carry malaria

Generic Puzzle

- Generics vs. classical quantifiers:
 - Harder to define mathematically
 - Easier for children to acquire

Generic Puzzle

- Generics vs. classical quantifiers:
 - Harder to define mathematically
 - Easier for children to acquire
- Proposal: computationally simpler

- Communication as a cooperative game:
 - Speaker knows something; listener does not
 - Speaker chooses to say something
 - Listener must infer what the speaker knows

- Communication as a cooperative game:
 - Speaker knows something; listener does not
 - Speaker chooses to say something
 - Listener must infer what the speaker knows
 - Inference as Bayesian inference

Communication as a cooperative game: Literal listener: infer based on truth

- Communication as a cooperative game:
 - Literal listener: infer based on truth
 - Pragmatic speaker: optimise choice for literal listener

- Communication as a cooperative game:
 - Literal listener: infer based on truth
 - Pragmatic speaker: optimise choice for literal listener
 - Pragmatic listener: infer based on pragmatic speaker

RSA for Generics (Tessler and Goodman, 2019)

- Semantically simple
 - Increasing ratio, increasing probability
 - $\bullet \ \mathbb{P}(Q) = \mathbb{P}(B | R)$

RSA for Generics (Tessler and Goodman, 2019)

- Semantically simple
 - Increasing ratio, increasing probability
 - $\bullet \ \mathbb{P}(Q) = \mathbb{P}(B | R)$
- Pragmatically dependent on prior knowledge
 - Dogs bark
 - Ducks lay eggs
 - Mosquitoes carry malaria

Generic Puzzle

- Generics vs. classical quantifiers:
 - Harder to define mathematically
 - Easier for children to acquire
- Proposal: computationally simpler

 Classical quantifiers are sensitive to probabilities being exactly 0 or 1

- Classical quantifiers are sensitive to probabilities being exactly 0 or 1
 - A vague predicate has to be seen as a distribution over precise predicates
 - Summing over this distribution is expensive

- Classical quantifiers are sensitive to probabilities being exactly 0 or 1
 - A vague predicate has to be seen as a distribution over precise predicates
 - Summing over this distribution is expensive
- GEN doesn't need precise predicates

- Classical quantifiers are sensitive to probabilities being exactly 0 or 1
 - A vague predicate has to be seen as a distribution over precise predicates
 - Summing over this distribution is expensive
- GEN doesn't need precise predicates
 - GEN can be lazy! Easier to compute!

Bonus: Donkey Anaphora

Every farmer who owns a donkey feeds it

Bonus: Donkey Anaphora

- Every farmer who owns a donkey feeds it
- Farmers who own donkeys feed them
- Linguists who use probabilistic models love them
- Mosquitoes which bite birds infect them with malaria

Bonus: Donkey Anaphora

Summary

- Quantification: conditional probability
- Generics: lazy probabilistic quantification
- Donkey anaphora: generic quantification

Classical Donkeys

