
Formal Syntax & Grammar Engineering (Exercise 3)

High-Level Goals

• Deploy a co-reference to improve our analysis of agreement.

• Implement an analysis of pre- and post-head modification.

• Eliminate redundancy from the lexicon by the use of types.

Background Reading

Read Sections 4.1 through 4.6 from Sag, Wasow, & Bender (2003). Make sure to compare their
examples and grammars to our slide copies and observe where in the lecture we have in some cases
(further) simplified over the book. Although Sag, Wasow, & Bender (2003) seem to advocate a
flat VP structure—i.e. a lexical head combining with all of its complements through a single rule
application—see whether you can find a discussion of the analysis we adopted (a binary branching,
recursive VP) somewhere in the text. Furthermore, compare their tree in (26) to the tree derived
by our grammar for a comparable sentence, e.g. the dog chased the cat. What are the differences, if
any?

1 Obtaining the Starting Grammar

• Log in to the GSLT server ‘mozart.gslt.hum.gu.se’ (using the account you were assigned for the
class) and start the LKB and emacs(1).

• If you completed the previous exercise and are fully comfortable with your solution, you can continue
from the contents of your ‘grammar1’ directory. If, however, you would rather get a fresh start for
this exercise, you can obtain a new starting grammar, equivalent to the model solution for the
previous exercise, by typing at the shell prompt:

cvs checkout grammar2

Note that, in case you get a fresh grammar, it will be in a new directory called ‘grammar2’.

2 Use of Feature Structure Re-Entrancies in Agreement

• Since the feature AGR is introduced on the type pos , all kinds of words will have an agreement
feature. However, in English only determiners and nouns (and probably verbs, depending on which
perspective one takes) have agreement information of their own. Unused features unnecessarily
increase the size of the grammar and can make errors more difficult to track down. Modify your
grammar so that the feature AGR only appears on AGR-bearing pos subtypes and not on others like
prep. To do this, you will need to add a new type, say agr-pos , below pos and then make det , noun,
and verb subtypes of the new agr-pos .

• The intuition behind determiner – noun agreement is that the AGR value of the noun must be the
same as that of its specifier. In our lexicon, though, the AGR value of the noun and the AGR value of
its specifier are stipulated separately. Use re-entrancies to eliminate this redundancy and capture
the generalization underlying agreement, viz. that the AGR value of the noun itself is identical to
that of its specifier. As always, verify your changes by parsing your test sentences, specifically the
ones testing agreement.

• In case the syntax of re-entrancies in TDL is still confusing, here’s an example:

x := y &

[F #1 & z,

G #1].

This definition means that the value of the feature F is z , and the value of the feature G is the same
as that of the feature F.

3 An Analysis of ‘Free’ Modifiers

• So far, we have grammar rules to combine heads with two general types of sister constituents, viz.
complements to the right of the head and specifiers to its left. Extend the grammar to provide an
analysis of modification, admitting sentences like the dog barks near the cat.

We introduce a new head feature MOD and a new syntactic rule for modifiers, and we make use of
the notion of underspecification.

• In the file ‘types.tdl’, add the feature MOD to the definition of the type pos, with its value con-
strained to be of type *list* , the same type as for the SPR attribute.

• Also in the types file, assign an appropriate value for MOD to each of the subtypes of pos. In our
analysis of ‘free’ modification, modifiers use a feature structure of type expression inside of their
MOD list to constrain the type of phrase they can attach to. In other words, modifiers are not
selected for by head daugthers, but instead the modifier daughter is the one to select which heads
it can modify. Non-modifiers, i.e. everything but prepositions at this point, will have an empty MOD

list. Prepositions, on the other hand, should have exactly one element in their MOD list, effectively
constraining which phrases they will be able to modify.

• Add near as an additional preposition in the lexicon, copying the entry of to and adapting it as
needed.

• In the file ‘rules.tdl, add a new head – modifier rule somewhat similar to the existing specifier –
head rule, but with the modifier daughter constraining the head daughter, e.g.

phrase

[

HEAD 2

]

1
phrase

[

HEAD 2

]

phrase

[

HEAD
[

MOD
〈

1

〉

]

]

• In addition to the above constraints, determine the SPR and COMPS values on the mother. Save your
changes, then test your revised grammar using the test file ‘mod.items’. Examine the results, and
make any necessary corrections.

• If your analysis does not already admit examples like the dog near the cat barks, modify your
grammar appropriately to also allow prepositions to modify nominal phrases. In order for modifiers
to select for phrases headed either by a verb or a noun, consider the introduction of an additional
type modable into the pos hierarchy, such that verb and noun will both be compatible with the new
modable .

• If your analysis provides two parses for the sentence the dog barks near the cat, modify your grammar
to eliminate one of the two parses, then run the batch parse again with the file ‘mod.items’, and
examine the results.

• Add additional sentences to the file ‘mod.items’, and notice what happens to the number of analyses
as you add several prepositional phrase modifiers within a single sentence.

4 Government of Specific Prepositional Phrase Complements

• We still fail to enforce the requirement on the PP complement of (the second lexical entry for) gave
that the PP be headed by the specific preposition to. Add an additional attribute PFORM to the
type prep and constrain it to take a value of type *string* . Next, in ‘lexicon.tdl’, make sure that
the value of PFORM (inside of prep) appropriately reflects the surface form of the preposition, e.g.
”to” for the lexical entry to.

• Adding PFORM to prep has the side-effect of making it a HEAD feature, i.e. one of the properties that
will be automatically passed up from a head daughter to its mother, e.g. from a preposition to the
PP built from combining a prepositional head with its NP complement. Parse the sentence the cat
gave the dog to the animal (using your own animal, of course; or ours, aardvark, if you started with

a fresh grammar today). Inspect the feature structure of the PP node in the parse tree and confirm
that its PFORM value is indeed ”to”.

• At this point, all PPs in our trees will be marked for PFORM, such that lexical heads selecting for PP
complements can now require a specific value. Add the necessary constraint to gave in the lexicon.

5 The Head Feature Principle

• Looking at the various rules, you will have noticed that in each rule the HEAD value of the whole
phrase is always the same as the HEAD value of one of the daughters in ARGS. The argument which
contributes the HEAD value to the whole phrase is known as the head daughter of the phrase. For
some kinds of phrases, the head daughter is the first daughter, and for some it’s the last daughter.
Rearrange the hierarchy of rules to capture this distinction between head-initial phrases and head-
final phrases.

• In ‘types.tdl’, add three new types:

head-initial := phrase &

[HEAD #head,

ARGS [FIRST [HEAD #head]]].

head-final := phrase &

[HEAD #head,

ARGS < expression, [HEAD #head] >].

root-head-final := root & head-final.

Note that our definition of head-final makes the simplifying assumption that all head-final phrases
are binary, i.e. have exactly two daughters (which is true for our current grammars). Also, we will
have more to say about the types root and root-head-final later in the course.

• Modify the rules in ‘rules.tdl’ to inherit from these new types. For example, the head-complement-rule-0
should look like:

head-complement-rule-0 := head-initial &

[SPR #spr,

COMPS < >,

ARGS < word &

[SPR #spr,

COMPS < >] >].

We call this rule head-initial, even though it has only one daughter, since the other head – complement
rules are also head-initial. Head-final rules, like the head-specifier-rule , should inherit from the type
head-final . The feature HEAD should not need mentioning in ‘rules.tdl’ at all, except for one
occurence in the head – modifier rule perhaps.

6 Eliminating Redundancy in the Lexicon

• Using the same strategy, i.e. the introduction of additional types for common feature structure
configurations, find and eliminate more redundant specifications in the grammar. Improve the
organization of the type hierarchy to make it easier to add new words that are similar to words
already in the lexicon. As a place to start, take a look at the lexical entries for nouns, and note
that the same information is stated again and again in each entry. Recast those generalizations as
constraints on a new type, noun-word , which every noun lexical entry inherits from. As you work,
use the batch parse facility now and again to make sure none of your modifications have damaged
the coverage of the grammar.

• Further eliminating redundancy from the lexicon, introduce subtypes of the type word for deter-
miners, verbs, and other parts of speech, adding any constraints which are true for all instances of
each word class:

det-word := word & [...].

verb-word := word & [...].

prep-word := word & [...].

• Introduce subtypes of the noun-word type for singular and plural nouns, and do the same for
determiners.

• Introduce subtypes of the verb-word type whose instances select for third-singular or non-third-
singular subjects for present-tense verbs, and an additional subtype of the verb-word type for
past-tense verbs.

• Introduce subtypes of the verb-word type to distinguish intransitives, transitives, and the two types
of ditransitive verbs.

• Take advantage of the notion of multiple inheritance to introduce lexical types in the file ‘types.tdl’
for the verbs in the file ‘lexicon.tdl’, making use of types from each of these two sets of subtypes
of the verb-word type. Remember that the syntax for defining multiple inheritance in TDL is as
follows:

x := y & z & [A b].

This definition says that the type x is a subtype of both y and z , and x introduces the feature A

with value b. Note that lexical entries in the file ‘lexicon.tdl’ can only inherit from a single type,
so any multiple inheritance that you introduce must be defined in the types file.

• Modify your entries in the file ‘lexicon.tdl’ to make use of these new types. When you are finished
with this exercise, each of the definitions in your ‘lexicon.tdl’ file should consist of the name of
the lexical entry, the name of its lexical type, and the orthography. Everything else should be
defined in the file ‘types.tdl’ file. Here is a sample ideal entry:

dog := noun-word-3sing &

[ORTH "dog"].

7 More Modification (Optional)

• Add an analysis for attributive adjectives like angry and fierce, as in the example those fierce dogs
bark. Introduce a new subtype of pos called adj. As with each extension of the grammar, design
your analysis to admit only grammatical sentences, avoiding both overgeneration (blocking, for
example, *those dogs fierce bark) and undergeneration (admitting, for example, those fierce angry
dogs bark). You will likely need a type distinction between pre- and post-modifiers, i.e. adjectives vs.
prepositional phrases. Aim to incorporate this additional distinction into the existing pos hierarchy,
rather than adding a new feature.

• If possible, try to avoid spurious ambiguity (i.e. multiple ‘equivalent’ analyses for the same input)
as, for example, in Those fierce dogs near the cat bark. Test your analysis using the batch parse
facility on the file ‘adj.items’, and make adjustments as needed. Add some additional items to
this file to illustrate the effects of your analysis.

Submit your results in email to Stephan and Lilja by 18:00 h on Friday, November 19.

