Formal Syntax and
Grammar Engineering

Stephan Oepen
Universitetet i Oslo & CSLI Stanford

oe@csli.stanford.edu

Lilja Ovrelid
Goteborgs Universitet

lilja.ovrelid@svenska.gu.se

http://www.delph-in.net/courses/04/fs/

The Type Hierarchy: Fundamentals

e Types ‘represent’ groups of entities with similar properties (‘classes’);

e types ordered by specificity: subtypes inherit properties of (all) parents;

e type hierarchy determines which types are compatible (and which not).

top

/

list *string”* feat-struc

ne-list “null* expression 0S
/1N

word phrase noun verb det

root

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (25)

Properties of (Our) Type Hierarchies

e Unique Top a single hierarchy of all types with a unique top node;
e No Cycles no path through the hierarchy from one type to itself;

e Unique Greatest Lower Bounds Any two types in the hierarchy are
either (a) incompatible (i.e. share no descendants) or (b) have a unique
most general (‘highest’) descendant (called their greatest lower bound);

e Closed World all types that exist have a known position in hierarchy;

e Compatibility type compatibility in the hierarchy determines feature
structure unifiability: two types unify to their greatest lower bound.

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (26)

Multiple Inheritance

e flyer and swimmer no common descendants: they are incompatible;

e flyer and bee stand in hierarchical relationship: they unify to subtype;

e flyer and invertebrate have a unique greatest common descendant.

top

animal

N

flyer swimmer invertebrate vertebrate

o~

fish

RN

cod guppy

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (27)

An Invalid Type Hierarchy

e swimmer and vertebrate have two joint descendants: fish and whale;

e fish and whale are incomparable in the hierarchy: glb condition violated.

top

animal

T

flyer swimmer invertebrate vertebrate

bee sh mammal

/ N

cod quppy whale dog

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (28)

Fixing the Type Hierarchy

e L KB system introduces glb types as required: ‘swimmer-vertebrate'. I

*t O p *
T
flyer swimmer invertebrate vertebrate

bee gibtypedz2 mammal

fish whale dog

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (29)

Typed Feature Structures: Notational Variants

word|

ORTH chased

HEAD
verb
SPR <
phrasel
COMPS <
phrase

[®#] chased - CHASED - expanded

Close &l Print]

Close

chased - CHASED - expanded

|[word
{ HEAD: werh
| 5PR: ["ne-list”
FIRST: [phrase
HE&D: noun
SPR: *list™
COMPS: *list*
ARGS: *list”)
REST: *null*]
| COMPE: "ne-list”
FIRST: [phrase
HEAD: noun
SPR: *list*
COMPS: *list™
ARG *list”
REST: "null™|
| ORTH: chased)

| R

Types, attributes, and values — large number of equivalent notations I

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (30)

expression := feat-struc &
[HEAD pos,

SPR *1istx*,

COMPS *1list*].

phrase := expression &
[ARGS *1listx*].

chased := word &
[ORTH "chased",
HEAD verb,

SPR < phrase & [HEAD noun] >,
COMPS < phrase & [HEAD noun] >].

Typed Feature Structures: More Notational Variants

[@] chased - CHASED - expanded

Close | Close &l Print!

chased - CHASED - expanded

|[word
| HEAD: verh
| 5PR: ["ne-list”
FIRST: [phrase
HEAD: noun
SPR: *hist”
COMPS: *hist*
ARGS: "list?]
REST: "null™]
| COMPE: ["ne-lst”
FIRST: [phrase
HE&D: noun
SFPR: *hist*
COMPS: "list”
ARGE: *list”]
REST: "null™]
| ORTH: chased)

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (31)

Feature Structure Unification: The Logics

Signature
FOO
T BAR)‘(
b BAZ y

TFS{ 1 TFSg = TFSy TFS{ 1 TFS3 = TFS3 TFS3[1TFS; = |BAR
b

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (32)

Properties of Typed Feature Structures

e Finiteness a typed feature structure has a finite number of nodes;

e Unigue Root and Connectedness a typed feature structure has a
unique root node; apart from the root, all nodes have at least one parent;

e No Cycles no node has an arc that points back to the root node or to
another node that intervenes between the node itself and the root;

e Unique Features any node can have any (finite) number of outgoing
arcs, but the arc labels (i.e. features) must be unique within each node;

e Typing each node has single type which is defined in the hierarchy.

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (33)

Typed Feature Structures (as Graph)

phr.ase ye.rb
HEAD
ARGS
“nelist* word ORTH “chased”
FIRST HEAD
REST verb
nelist __expression noun
FIRST HEAD
REST
“null*
]

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (34)

phrasel

Our Example Structure as an AVM

HEAD verb

ARGS

ne-list|

FIRST

REST

word

ne-list

ORTH “chased”
HEAD verb

FIRST . [HEAD noun]
expression

REST “null*

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (35)

Our Example Structure in the Description Language

4 N

vp := phrase &
[HEAD verb,
ARGS *ne-listx* &
[FIRST word &
[ORTH "chased",
HEAD verb],
REST *ne-listx &
[FIRST expression &
[HEAD noun],
REST *nullx]]]

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (36)

Reentrancy in a Typed Feature Structure (Graph)

phr.ase ye.rb
HEAD
ARGS HEAD
“ne-list” word ‘chased”
FIRST ORTH
REST
nelist __expression noun
FIRST HEAD
REST

‘nyll*

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (37)

Reentrancy in a Typed Feature Structure (AVM)

HEAD [1|verb

ORTH “chased”

FIRST HEAD

word

ARGS '
FIRST | {HEAD noun]
REST expression

REST “null*

ne-list

phrase *ne-list*l

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (38)

Reentrancy in a Typed Feature Structure (TDL)

4 N

bar := phrase &
[HEAD #head & verb,
ARGS *ne-listx* &
[FIRST word &
[ORTH "chased",
HEAD #head],
REST *ne-listx &
[FIRST expression &
[HEAD noun],
REST *nullx*]]]

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (39)

Typed Feature Structure Subsumption

e Typed feature structures can be partially ordered by information content;

e a more general structure is said to subsume a more specific one;

. *top*” is the most general feature structure (while _L is inconsistent);

e C (‘square subset or equal’) conventionally used to depict subsumption.

Feature structure F subsumes feature structure G (F C @) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of pin F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (40)

Feature Structure Subsumption: Examples

Signature
FOO
T BAR)‘(
b BAZ y

Feature structure F subsumes feature structure G (F C @) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of pin F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (41)

Typed Feature Structure Unification

e Decide whether two typed feature structures are mutually compatible;

e determine combination of two TFSs to give the most general feature
structure which retains all information which they individually contain;

e if there is no such feature structure, unification fails (depicted as _);
e unification monotonically combines information from both ‘input’ TFSs;

e relation to subsumption the unification of two structures F and G is
the most general TFS which is subsumed by both F and G (if it exists).

e [1 (‘square set intersection’) conventionally used to depict unification.

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (42)

Typed Feature Structure Unification: Examples

Signature
FOO
T BAR "(
b BAZ y

FOO 1]y
TFS; M TFSy = TFSy, TFS; M TFS; = TFS; TFS3 M TFSy; = |BAR
b BAZ X

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (43)

Recognizing the Language of a Grammar

'S NP VP A
VP — V NP
VP — VP PP
NP — NP PP
PP — P NP
NP — kim | snow | oslo
V — snores | adores

\P — N /
All Complete Derivations
e are rooted in the start symbol S;

e label internal nodes with cate-
gories € C, leafs with words € ¥;

e instantiate a grammar rule € P at
each local subtree of depth one.

GOTHENBURG — 21-OCT-04 (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (44)

S
NP VP
‘ /\
Kim VP PP
T L

adores snow in oslo

S
NP VP
T
v NP

kim
‘ A
adores NP PP

| o
snow P NP

in oslo

Bottom-Up Chart Parsing in the LKB

e Initialize chart: retrieve all lexical entries for all words in the input string;

e Parsing: apply all rules to all adjacent tuples of edges from the chart;

e Add new chart edge for each successful instantiation of a grammar rule.

,,,,,,,,,,,,,,,,,,, NP
/////////////////////////////// NP

~.
-

- .y
\\\\\
d .

S
-,
.

~.

7
7

.
S
.

S
\\
.,

S
T
G
s

from ./France

5 6 /

with /

4

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (45)

Type Constraints and Appropriate Features

e Well-formed TFSs satisfy all type constraints from the type hierarchy;
e type constraints are typed feature structures associated with a type;

e the top-level features of a type constraint are appropriate features;

e type constraints express generalizations over a ‘class’ (set) of objects.

type constraint appropriate features

FIRST *top*

REST *list* FIRST and REST

ne-list

*

*ne-list

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (46)

Type Inference: Making a TFS Well-Formed

e Apply all type constraints to convert a TFS into a well-formed TFS;
e determine most general well-formed TFS subsumed by the input TFS;

e specialize all types so that all features are appropriate:

HEAD pos

HEAD pos
. E—
ARGS *list*

ARGS *list*

*

“top phrase

e expand all nodes with the type constraint of the type of that node:

HEAD pOS |
HEAD poSs ARGS “list”
. — .
ARGS *list” SPR “list*
phrase

COMPS *list™

phrasel

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (47)

More Interesting Well-Formed Unification

Type Constraints Associated to Earlier animal Hierarchy

swimmer — . [FINS bool] mammal — [FRIENDLY bool
swimmer mammal

‘BALEEN bool
whale — FINS true
FRIENDLY bool

whale

BALEEN bool|
[FINS bool} = FINS true

[FRIENDLY true} [
FRIENDLY frue

mammal swimmer

whale

[FRIENDLY true} [T [FINS false} = 1

swimmer

mammal

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (48)

Recursion in the Type Hierarchy

e Type hierarchy must be finite after type inference; illegal type constraint:
x1ist* := xtop* & [FIRST *topx, REST *list*].

e needs additional provision for empty lists; indirect recursion:

x*1list* := *top*.
ne—-list := xlist* & [FIRST *topx*, REST *listx*].
null := *x1istx*.

e recursive types allow for parameterized list types (‘list of X):

s—list := *x1list*.
s—-ne—-list := *ne-listx & *s-list &

[FIRST expression, REST *s-listx].
*s—-null*x := *null* & *s—-list*.

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (49)

Notational Conventions

e lists not available as built-in data type; abbreviatory notation in TDL.:
< a, b >=[FIRST a, REST [FIRST b, REST *nullx*]]

e underspecified (variable-length) list:
<a ... >=][FIRST a, REST *listx*]

e difference (open-ended) lists; allow concatenation by unification:
<! a !>=[LIST [FIRST a, REST #tail], LAST #tail]

e built-in and ‘non-linguistic’ types pre- and suffixed by asterisk (*top*);

e sirings (e.g. “‘chased”) need no declaration; always subtypes of *string*;

e strings cannot have subtypes and are (thus) mutually incompatible.

GOTHENBURG — 21-OCT-04 (0e@csli.stanford.edu)

Formal Syntax and Grammar Engineering (50)

