
Formal Syntax and
Grammar Engineering

Stephan Oepen
Universitetet i Oslo & CSLI Stanford

oe@csli.stanford.edu

Lilja Øvrelid
Göteborgs Universitet

lilja.ovrelid@svenska.gu.se

http://www.delph-in.net/courses/04/fs/

The Type Hierarchy: Fundamentals

• Types ‘represent’ groups of entities with similar properties (‘classes’);

• types ordered by specificity: subtypes inherit properties of (all) parents;

• type hierarchy determines which types are compatible (and which not).

top

string feat-struc*list*

expression pos

noun verb det

ne-list *null*

phrase

root

word

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (25)

Properties of (Our) Type Hierarchies

• Unique Top a single hierarchy of all types with a unique top node;

• No Cycles no path through the hierarchy from one type to itself;

• Unique Greatest Lower Bounds Any two types in the hierarchy are
either (a) incompatible (i.e. share no descendants) or (b) have a unique
most general (‘highest’) descendant (called their greatest lower bound);

• Closed World all types that exist have a known position in hierarchy;

• Compatibility type compatibility in the hierarchy determines feature
structure unifiability: two types unify to their greatest lower bound.

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (26)

Multiple Inheritance

• flyer and swimmer no common descendants: they are incompatible;

• flyer and bee stand in hierarchical relationship: they unify to subtype;

• flyer and invertebrate have a unique greatest common descendant.

top

animal

swimmer invertebrateflyer vertebrate

bee fish

cod guppy

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (27)

An Invalid Type Hierarchy

• swimmer and vertebrate have two joint descendants: fish and whale;

• fish and whale are incomparable in the hierarchy: glb condition violated.

top

animal

swimmer invertebrateflyer vertebrate

bee fish

cod guppy

mammal

whale dog

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (28)

Fixing the Type Hierarchy

• LKB system introduces glb types as required: ‘swimmer-vertebrate’.

top

animal

swimmer invertebrateflyer vertebrate

bee glbtype42 mammal

whale dogfish

cod guppy

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (29)

Typed Feature Structures: Notational Variants

word















































































































ORTH chased
HEAD

verb









SPR
〈

phrase



































HEAD
noun









SPR 〈· · ·〉
COMPS 〈· · ·〉
ARGS 〈· · ·〉



































〉

COMPS
〈

phrase



































HEAD
noun









SPR 〈· · ·〉
COMPS 〈· · ·〉
ARGS 〈· · ·〉



































〉















































































































Types, attributes, and values — large number of equivalent notations

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (30)

Typed Feature Structures: More Notational Variants

expression := feat-struc &

[HEAD pos,

SPR *list*,

COMPS *list*].

phrase := expression &

[ARGS *list*].

chased := word &

[ORTH "chased",

HEAD verb,

SPR < phrase & [HEAD noun] >,

COMPS < phrase & [HEAD noun] >].

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (31)

Feature Structure Unification: The Logics

TFS1:
a













FOO x
BAR x













TFS2:
a













FOO x
BAR y













TFS3:

b





















FOO y
BAR x
BAZ x





















TFS4:
a













FOO 1 x
BAR 1













Signature

a FOO
BAR

x

b BAZ y

TFS1 u TFS2 ≡ TFS2 TFS1 u TFS3 ≡ TFS3 TFS3 u TFS4 ≡

b





















FOO 1 y
BAR 1
BAZ x





















UNIFICATION (‘u’) ensures compatibility and combines all information

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (32)

Properties of Typed Feature Structures

• Finiteness a typed feature structure has a finite number of nodes;

• Unique Root and Connectedness a typed feature structure has a
unique root node; apart from the root, all nodes have at least one parent;

• No Cycles no node has an arc that points back to the root node or to
another node that intervenes between the node itself and the root;

• Unique Features any node can have any (finite) number of outgoing
arcs, but the arc labels (i.e. features) must be unique within each node;

• Typing each node has single type which is defined in the hierarchy.

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (33)

Typed Feature Structures (as Graph)

phrase
HEAD

-verb

R

ARGS

ne-list
FIRST

-word ORTH
-“chased”

HEAD

jverb

R

REST

ne-list
FIRST

-
expression

HEAD
-
noun

R

REST

null

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (34)

Our Example Structure as an AVM

phrase





























































HEAD verb

ARGS

ne-list

















































FIRST

word













ORTH “chased”
HEAD verb













REST

ne-list



















FIRST
expression



HEAD noun




REST *null*































































































































ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (35)

Our Example Structure in the Description Language

'

&

$

%

vp := phrase &

[HEAD verb,

ARGS *ne-list* &

[FIRST word &

[ORTH "chased",

HEAD verb],

REST *ne-list* &

[FIRST expression &

[HEAD noun],

REST *null*]]] .

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (36)

Reentrancy in a Typed Feature Structure (Graph)

phrase
HEAD

-verb

R

ARGS

ne-list
FIRST

-word
ORTH

-“chased”

HEAD

I

R

REST

ne-list
FIRST

-
expression

HEAD
-
noun

R

REST

null

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (37)

Reentrancy in a Typed Feature Structure (AVM)

phrase































































HEAD 1 verb

ARGS

ne-list

















































FIRST

word













ORTH “chased”
HEAD 1













REST

ne-list



















FIRST
expression



HEAD noun




REST *null*

































































































































ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (38)

Reentrancy in a Typed Feature Structure (TDL)

'

&

$

%

bar := phrase &

[HEAD #head & verb,

ARGS *ne-list* &

[FIRST word &

[ORTH "chased",

HEAD #head],

REST *ne-list* &

[FIRST expression &

[HEAD noun],

REST *null*]]] .

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (39)

Typed Feature Structure Subsumption

• Typed feature structures can be partially ordered by information content;

• a more general structure is said to subsume a more specific one;

•
top







 is the most general feature structure (while ⊥ is inconsistent);

• v (‘square subset or equal’) conventionally used to depict subsumption.

Feature structure F subsumes feature structure G (F v G) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of p in F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (40)

Feature Structure Subsumption: Examples

TFS1:
a













FOO x
BAR x













TFS2:
a













FOO x
BAR y













TFS3:

b





















FOO y
BAR x
BAZ x





















TFS4:
a













FOO 1 x
BAR 1













Signature

a FOO
BAR

x

b BAZ y

Feature structure F subsumes feature structure G (F v G) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of p in F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (41)

Typed Feature Structure Unification

• Decide whether two typed feature structures are mutually compatible;

• determine combination of two TFSs to give the most general feature
structure which retains all information which they individually contain;

• if there is no such feature structure, unification fails (depicted as ⊥);

• unification monotonically combines information from both ‘input’ TFSs;

• relation to subsumption the unification of two structures F and G is
the most general TFS which is subsumed by both F and G (if it exists).

• u (‘square set intersection’) conventionally used to depict unification.

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (42)

Typed Feature Structure Unification: Examples

TFS1:
a













FOO x
BAR x













TFS2:
a













FOO x
BAR y













TFS3:

b





















FOO y
BAR x
BAZ x





















TFS4:
a













FOO 1 x
BAR 1













Signature

a FOO
BAR

x

b BAZ y

TFS1 u TFS2 ≡ TFS2 TFS1 u TFS3 ≡ TFS3 TFS3 u TFS4 ≡

b





















FOO 1 y
BAR 1
BAZ x





















ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (43)

Recognizing the Language of a Grammar'

&

$

%

S → NP VP
VP → V NP
VP → VP PP
NP → NP PP
PP → P NP
NP → kim | snow | oslo
V → snores | adores
P → in

All Complete Derivations
• are rooted in the start symbol S;

• label internal nodes with cate-
gories ∈ C, leafs with words ∈ Σ;

• instantiate a grammar rule ∈ P at
each local subtree of depth one.

S

NP

kim

VP

VP

V

adores

NP

snow

PP

P

in

NP

oslo

S

NP

kim

VP

V

adores

NP

NP

snow

PP

P

in

NP

oslo

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (44)

Bottom-Up Chart Parsing in the LKB

• Initialize chart: retrieve all lexical entries for all words in the input string;

• Parsing: apply all rules to all adjacent tuples of edges from the chart;

• Add new chart edge for each successful instantiation of a grammar rule.

2 3 4 5 6 7

girls with hats from France

NP NP NP

PP PP

NP NP

PP

NP

NP

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (45)

Type Constraints and Appropriate Features

• Well-formed TFSs satisfy all type constraints from the type hierarchy;

• type constraints are typed feature structures associated with a type;

• the top-level features of a type constraint are appropriate features;

• type constraints express generalizations over a ‘class’ (set) of objects.

type constraint appropriate features

ne-list
ne-list













FIRST *top*
REST *list*













FIRST and REST

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (46)

Type Inference: Making a TFS Well-Formed

• Apply all type constraints to convert a TFS into a well-formed TFS;

• determine most general well-formed TFS subsumed by the input TFS;

• specialize all types so that all features are appropriate:

top













HEAD pos
ARGS *list*













−→

phrase













HEAD pos
ARGS *list*













• expand all nodes with the type constraint of the type of that node:

phrase













HEAD pos
ARGS *list*













−→

phrase





























HEAD pos
ARGS *list*
SPR *list*
COMPS *list*





























ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (47)

More Interesting Well-Formed Unification

Type Constraints Associated to Earlier animal Hierarchy

swimmer →
swimmer



FINS bool


 mammal →
mammal



FRIENDLY bool




whale →

whale





















BALEEN bool
FINS true
FRIENDLY bool





















mammal



FRIENDLY true


u
swimmer



FINS bool


≡

whale





















BALEEN bool
FINS true
FRIENDLY true





















mammal



FRIENDLY true


u
swimmer



FINS false


≡ ⊥

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (48)

Recursion in the Type Hierarchy

• Type hierarchy must be finite after type inference; illegal type constraint:
list := *top* & [FIRST *top*, REST *list*].

• needs additional provision for empty lists; indirect recursion:

list := *top*.

ne-list := *list* & [FIRST *top*, REST *list*].

null := *list*.

• recursive types allow for parameterized list types (‘list of X’):

s-list := *list*.

s-ne-list := *ne-list* & *s-list &

[FIRST expression, REST *s-list*].

s-null := *null* & *s-list*.

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (49)

Notational Conventions

• lists not available as built-in data type; abbreviatory notation in TDL:

< a, b > ≡ [FIRST a, REST [FIRST b, REST *null*]]

• underspecified (variable-length) list:

< a ... > ≡ [FIRST a, REST *list*]

• difference (open-ended) lists; allow concatenation by unification:

<! a !> ≡ [LIST [FIRST a, REST #tail], LAST #tail]

• built-in and ‘non-linguistic’ types pre- and suffixed by asterisk (*top*);

• strings (e.g. “chased”) need no declaration; always subtypes of *string*;

• strings cannot have subtypes and are (thus) mutually incompatible.

ABabcdfghiejkl gothenburg — -oct- (oe@csli.stanford.edu)

Formal Syntax and Grammar Engineering (50)

