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Abstract. This article details our experiments on hpsg parse disambiguation, based on
the Redwoods treebank. Using existing and novel stochastic models, we evaluate the
usefulness of different information sources for disambiguation – lexical, syntactic, and
semantic. We perform careful comparisons of generative and discriminative models using
equivalent features and show the consistent advantage of discriminatively trained models.
Our best system performs at over 76% sentence exact match accuracy.
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1. Introduction

This article presents probabilistic models that try to select the correct anal-
ysis for a sentence based on statistics gathered from the Redwoods hpsg
treebank (Oepen et al., 2002, 2004, in press). Head-driven Phrase Structure
Grammar (hpsg), the grammar formalism underlying the Redwoods cor-
pus, is a modern constraint-based lexicalist (or “unification”) grammar for-
malism, particularly noted for its concern for broad descriptive adequacy,
precise formal specification, and close linking between syntax and seman-
tic interpretation.1 As a strong competence theory (Kaplan and Bresnan,
1982), there has been considerable emphasis within hpsg on providing a
syntactic model that can plausibly support an account of human sentence
processing, and in particular, there has been discussion of the resolution
problem of how the many sources of linguistic and contextual evidence are
brought to bear in real time to decide a sentence’s interpretation. However,
while hpsg has enjoyed great success in developing implementable syntactic
theories of broad empirical reach which give precise semantic interpreta-
tions, there has been relatively little progress in solving the ambiguity res-
olution problem – despite the fact that an effective solution is necessary
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for successfully applying hpsg in practical nlp systems, for anything but
the most restricted domains. In this paper we show how this problem can
be effectively approached by using probabilistic models of evidence integra-
tion, and how even models that consider only sentence-internal context can
be quite effective in solving most structural and interpretive ambiguities.
Our emphasis here is on the engineering side, where the goal is simply to
disambiguate effectively so as to determine the correct sentence interpreta-
tion, but to the extent that these models are successful, they lend support
to recent work in psycholinguistics which has also explored probabilistic
models of sentence interpretation (MacDonald, 1994; Trueswell, 1996).

Examining the nature of the hpsg parse disambiguation problem, the
fine-grained representations found in the Redwoods treebank raise novel
issues relative to more traditional treebanks such as the Penn treebank
(Marcus et al., 1993), which have been the focus of most past work on
probabilistic parsing, e.g. (Collins, 1997; Charniak, 1997). The Redwoods
treebank makes available a variety of rich representations. Information in
hpsg is represented by a sign, a typed feature structure which represents
phonological, syntactic, and semantic information about a word or phrase.
This information is built up for a sentence compositionally from the signs
of sentence parts. We have not used the full hpsg sign in our current mod-
els, but rather a number of simpler projections of the sign and how it was
composed. Most similar to Penn treebank parse trees are phrase structure
trees projected from the sign (Figure 1b), but in this work we have concen-
trated on use of derivation trees (Figure 1a), which record the combining
rule schemas of the hpsg grammar which were used to license the sign by
combining initial lexical types.2 The internal nodes represent, for example,
head-complement, head-specifier, and head-adjunct schemas, which were
used to license larger signs out of component parts. These derivation trees
hence provide significantly different information from conventional phrase
structure trees, but have proven to be quite effective for disambiguation.
These representations are more fine-grained than those familiar from the
Penn treebank: for example, rather than 45 part-of-speech tags and 27
phrasal node labels, we have about 8000 lexical item identifiers, and 70 der-
ivational schemas. The lexical types are more similar to those employed
in Lexicalized Tree-Adjoining Grammar work (Srinivas and Joshi, 1999),
encoding information such as verbal subcategorization.

Another important difference between the Penn Treebank and the Red-
woods corpus is that the former has only an implicit grammar given by
the observed trees, while all parses in the Redwoods corpus are licensed by
an explicit, and much more constraining, hpsg grammar. In this sense, and
because of the similarity between hpsg and lfg, our work is much more
similar to parse disambiguation work for lfg grammars (Riezler et al.,
2002). Additionally, the (implicit) Penn treebank grammar and the LinGO
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erg (English Resource Grammar) differ in that the Penn treebank often
uses quite flat grammatical analyses while the erg is maximally binary, with
extensive use of unary schemas for implementing morphology and type-
changing operations. Much common wisdom that has been acquired for
building probabilistic models over Penn treebank parse trees is implicitly
conditioned on the fact that the flat representations of the Penn treebank
trees mean that most important dependencies are represented jointly in a
local tree. Thus lessons learned there may not be applicable to our problem
(see Collins, 1999 for a careful discussion of this issue). Our results should
inform other in progress efforts at constructing hpsgbased treebanks, such
as the Polish treebank (Marciniak et al., 1999) and the Bulgarian hpsg tree-
bank (Simov et al., 2002).

Finally, the hpsg signs provide deep semantic representations for
sentences: together with the syntactic analyses of constituents, an un-
derspecified minimal recursion semantics (mrs) representation (Copestake
et al., 1999) is built up. This semantic information, unavailable in the Penn
treebank, may provide a useful source of additional features, at least par-
tially orthogonal to syntactic information, for aiding parse disambiguation.
Again, so far we have not used the full mrs structures but rather a semantic
dependency tree, which projects a portion of the semantic information.

On the one hand, the richer analyses available have the potential to pro-
vide more information to ease parse disambiguation; on the other hand,
the finer grain requires finer levels of structure and meaning disambigua-
tion and raises increased data sparsity issues, especially since the corpus
available to us is far smaller than the Penn treebank. It is thus unclear a
priori how the unique aspects of the hpsg representations will affect per-
formance on the parse disambiguation task. In this work, we have explored
building probabilistic models for parse disambiguation using this rich hpsg
treebank, assessing the effectiveness of different kinds of information. We
present generative and discriminative models using analogous features and
compare their performance on the disambiguation task. Among the results
that we obtain are:

– Lexical information alone accounts for only half of the parse ambigu-
ity inherent in the corpus, providing an upper bound on parse disam-
biguation via tagging, which we approach within a few percent. That
is, supertagging (Srinivas and Joshi, 1999) alone is not effective in this
domain.

– Using multiple sources of information, in particular, adding semantic
information, can synergistically improve parse disambiguation perfor-
mance.

– Conditional models achieve up to 28% error reduction over generative
models.
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– Our models achieve quite high overall parse disambiguation
performance, as much as 76.7% exact match parse selection accuracy
on ambiguous sentences in the corpus.

– Of the remaining errors, about 62% are real errors, in which the tree-
bank is right and model is wrong. The major part of these errors are
due to PP and other modifier attachment ambiguities.

In the sections that follow, we describe the various statistical models we
test, provide experimental results on the parse disambiguation task, and
provide some preliminary error analysis.

2. Overview of Models

A variety of approaches are possible for building statistical models for
parse disambiguation. The Redwoods treebank makes available exhaustive
hpsg sign representations for all analyses of sentences. These are large
attribute-value matrices which record all aspects of a sentence’s syntax and
semantics. We have concentrated on using small subsets of these representa-
tions. In our initial experiments we built a tagger for the hpsg lexical item
identifiers in the treebank, and report results on using the tagger for parse
disambiguation. Subsequent models included modeling of tree structures.
We have explored training stochastic models using derivation trees, phrase
structure trees, and semantic trees (which are approximations to the mrs
representation). Figure 1 shows examples of a derivation tree, phrase struc-
ture tree and an elementary dependency graph. The learned probabilistic
models were used to rank possible parses of unseen test sentences accord-
ing to the probabilities they assign to them.

Most probabilistic parsing research is based on branching process mod-
els (Harris, 1963). The hpsg derivations that the treebank makes available
can be viewed as such a branching process, and a stochastic model of
the trees can be built as, for instance, a probabilistic context-free gram-
mar (PCFG) model. Abney (1997) notes problems with the soundness of
the approach, showing that the distribution of derivations of a unifica-
tion-based grammar may well not be in the class of PCFG grammars
defined using its context-free base. He motivates the use of log-linear mod-
els (Agresti, 1990) for parse ranking that Johnson and colleagues further
developed (Johnson et al., 1999). Building conditional log-linear models
is also expected to improve generalization performance because the crite-
rion being optimized is discriminative (Vapnik, 1998; Ng and Jordan, 2002
Klein and Manning, 2002).

In this work we have experimented with both generative and condi-
tional log-linear models over the same feature sets and we report results
achieved using both kinds of models. We examine the performance of five
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Figure 1. Native and derived Redwoods representations for the sentence Do you
want to meet on Tuesday? – (a) derivation tree using unique rule and lexical item
(in bold) identifiers of the source grammar (top), (b) phrase structure tree labelled
with user-defined, parameterizable category abbreviations (center), and (c) elemen-
tary dependency graph extracted from the mrs meaning representation (bottom).
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models: an HMM tagging model, a simple PCFG, a PCFG with ancestor
annotation where the number of ancestors was selected automatically, a
model of semantic dependencies, and a hybrid model that combines predic-
tions from several of the above models. For these models we also trained
corresponding conditional log-linear models using the same information
sources as the generative models.

These models will be described in more detail in the next section. We
first describe the generative models and after that their corresponding
conditional log-linear models.

3. Generative Models

3.1. Tagger

The tagger we implemented is a standard trigram HMM tagger, defining a
joint probability distribution over the preterminal sequences and yields of
the derivation trees. The preterminals of the derivation trees are the lexical
item identifiers. They are displayed in bold in Figure 1a.

Trigram probabilities are smoothed by linear interpolation with lower-
order models, using Witten–Bell smoothing with a varying parameter d

(Witten and Bell, 1991). The general formulation for deleted interpolation
based on linear context subsets is:

P̃ (y|x1, . . . , xn) = λx1, . . . , xnP̂ (y|x1, . . . , xn)

+(1−λx1, . . . ,xn
)P̃ (y|x1, . . . , xn−1)

and the Witten–Bell method we used defines the interpolation weights as

λ(x1, . . . , xn)= c(x1, . . . , xn)

c(x1, . . . , xn)+d ×|y : c(y, x1, . . . , xn)>0| .

The lexical item identifiers shown in Figure 1 are organized into about
500 lexical types, which are themselves placed in the hpsg type hierarchy.
The lexical types are not shown in the figure. They are the direct super-
types of the lexical items. For example, the lexical type of meet v1 in the
figure is v unerg le, and the lexical type of want v2 is v subj equi le. Our
tagging model does not take advantage of the lexical types or the type hier-
archy in which they are organized and we plan to pursue incorporating this
information in future models.

3.2. PCFG models over derivation trees

The PCFG models define probability distributions over the trees of deri-
vational types corresponding to the hpsg analyses of sentences. A PCFG
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model has parameters θi,j for each rule Ai →αj in the corresponding con-
text-free grammar (θi,j = P(αj |Ai)).3 In our application, the nonterminals
in the PCFG Ai are schemas of the hpsg grammar used to build the parses
(such as head-compl or head-adj). We set the parameters to maximize the
likelihood of the set of derivation trees for the preferred parses of the sen-
tences in a training set. In further discussion we will refer to this simple
PCFG model as PCFG-1P.

PCFG models can be made better if the rule applications are conditioned
to capture sufficient context. For example, grandparent annotation for
PCFGs has been shown to significantly improve parsing accuracy (Char-
niak and Carroll, 1994; Johnson, 1998). One feature of the LinGO erg is
that it is binarized and thus it is even more important to make probabilis-
tic models aware of a wider context. We implemented several models that
condition additionally on the parent, grandparent, etc. of the current node.
Model PCFG-2P uses the current node’s parent and has parameters θ<i1,i2>,j

for each rule Ai1 : Ai2 → αj in the derivation trees. Here Ai2 denotes the
label of a node, and Ai1 the label of its parent. Similarly model PCFG-
3P conditions on the node’s parent and grandparent. For estimation of
the local expansion probabilities, these models use linear interpolation of
estimates based on linear subsets of the conditioning context. The inter-
polation coefficients were obtained using Witten–Bell smoothing as for the
tagger.

An interesting issue is how many levels of parenting are optimal and
how to learn that automatically.

We implemented an extended PCFG that conditions each node’s expan-
sion on up to five of its ancestors in the derivation tree. Our method
of ancestor selection is similar to learning context-specific independencies
in Bayesian networks (Friedman and Goldszmidt, 1996). In particular, we
use decision tree representation of the distribution P(αj |context) where
context contains five ancestors. We experimented with growing the decision
tree according to an MDL criterion and gain ratio and the growing algo-
rithm did not make a noticeable difference. The final probability estimates
were linear interpolations of relative frequency estimates in a decision tree
leaf and all nodes on the path to the root, as in Magerman (1995). The
interpolation coefficients were again estimated using Witten–Bell smooth-
ing. We will refer to the PCFG model with ancestor information as PCFG-A.

3.3. PCFG Models over semantic dependency trees

We also learned PCFG-style models over trees of semantic dependencies
extracted from the hpsg signs. These semantic models served as an early
experiment in using semantic information for disambiguation. We intend as
work progresses to build stochastic models over the elementary dependency
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Figure 2. Semantic dependency tree for the sentence: I am sorry.

graphs extracted from mrs meaning representations shown in Figure 1 but
for the moment keep to tree representations. The semantic trees mirror
the derivation trees. They were obtained in the following manner: Each
node in the derivation tree was annotated with its key semantic relation
(Copestake et al., 1999). Consequently the annotated tree was flattened so
that all dependents of a semantic relation occur at the same level of the
tree as its direct descendants. Figure 2 shows the semantic dependency tree
for the sentence: I am sorry.

The probability of a semantic dependency tree was estimated as a prod-
uct of the probabilities of local trees, such as the one shown in Figure 2.
For these trees the expansion of a node is viewed as consisting of separate
trials for each dependent. Any conditional dependencies among children of
a node can be captured by expanding the history. The probability of gen-
erating a dependent in the semantic dependency trees is estimated given a
context of five conditioning features. These were, the parent of the node
(the parent is the head and the node is the dependent), the direction (left
of right), the number of dependents already generated in the surface string
between the head and the dependent, the grandparent label, and the label
of the immediately preceding dependent. This model is a slight modifica-
tion of the model over semantic dependency trees described in (Toutanova
and Manning, 2002).

More specifically, the model for generation of semantic dependents to
the left and right is as follows: first the left dependents are generated from
right to left given the head, its parent, right sister, and the number of
dependents to the left that have already been generated. After that, the
right dependents are generated from left to right, given the head, its parent,
left sister and number of dependents to the right that have already been
generated. We also add stop symbols at the ends to the left and right. This
model is very similar to the markovized rule models in Collins (1997). For
example, the joint probability of the dependents of be prd rel in the above
example would be:

P(pron rel|be prd rel, lef t,0, top,none)×
P(stop|be prd rel, lef t,0, top,pron rel)×



STOCHASTIC HPSG PARSE DISAMBIGUATION 91

P(sorry rel|be prd rel, right,0, top,none)×
P(stop|be prd rel, right,1, top, sorry rel)

The amount of conditioning context for this phase was chosen auto-
matically similarly to PCFG-A, using a decision tree growing algorithm.
Final probability estimates were obtained at the decision tree leaves using
Witten–Bell smoothing as for the other models. In further discussion we
will refer to the model of semantic dependencies as PCFG-Sem.

3.4. Model combination

We explored combining the predictions from the PCFG-A model, the tag-
ger, and PCFG-Sem. The combined model computes the scores of analyses
as linear combinations of the log-probabilities assigned to the analyses by
the individual models. Since some of the factors participating in the tag-
ger also participate in the PCFG-A model, in the combined model we used
only the trigram tag sequence probabilities from the tagger. These are the
transition probabilities of the HMM tagging model.

More specifically, for a tree t ,

Score(t) = log(PPCFG-A(t))+λ1 log(PTRIG(tags(t)))

+λ2 log(PPCFG-Sem(t)),

where PTRIG(tags(t)) is the probability of the sequence of preterminals
t1, . . . , tn in t according to a trigram tag model:

PTRIG(t1 . . . tn)=
∏n

i=1
P(ti |ti−1, ti−2)

with appropriate treatment of boundaries. The trigram probabilities are
smoothed as for the HMM tagger. The combination weights λ1 and λ2

were not fitted extensively. The performance of the model was stable under
changes of the value of λ1 in the range 0.2 to 1, whereas the performance
of the combination went down if λ2 was set to a value above 0.5. We
report results using values λ1 =0.5 and λ2 =0.4.

4. Conditional Log-linear Models

A conditional log-linear model for estimating the probability of an hpsg
analysis given a sentence has a set of features {f1, . . . , fm} defined over
analyses and a set of corresponding weights {λ1, . . . , λm} for them. In this
work we have defined features over derivation trees and semantic trees as
described for the branching process models.
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For a sentence s with possible analyses t1, . . . , tk, the conditional prob-
ability for analysis ti is given by

P(ti |s)= exp
∑

j=1,... ,m fj (ti)λj∑
i ′=1,... ,k exp

∑
j=1, ... ,m fj (ti ′)λj

.

As described by Johnson et al. (1999), we trained the model by max-
imizing the conditional likelihood of the preferred analyses and using a
Gaussian prior for smoothing (Chen and Rosenfeld, 1999). In particular,
the objective being maximized was the following:

L(D,�)=
∑

i=1, ... ,n

log(p(t1|si))− 1
2σ 2

∑

j=1, ... ,m

λ2
j .

Here D is the training data set and i ranges over all sentences; t1 denotes
the correct analysis for a sentence; σ is the standard deviation of the
Gaussian prior. We experimented with several values for σ and small values
were better. In the following experiments, σ =1 was used for all models.

We used the conjugate gradient method for optimization. In our experi-
ments including only features with observed frequency more than a thresh-
old was not advantageous and therefore we include all occurring features.

In Riezler et al. (2002) similar log-linear models are used, but only par-
tial annotation of correct analyses is available and therefore they optimize
the conditional likelihood of consistent parses. The features (properties)
they use include counts of c-structure subtrees, nodes, and f-structure
attributes. More complex features indicating attachment, branching, and
(non) parallelism of coordinations are also included. Lexical features are
obtained using a clustering model.

Our log-linear models have features exactly corresponding to the five
generative models described in the previous section. The following subsec-
tions give more detail on the correspondence between the generative and
discriminative models.

4.1. Tagger

The conditional tagging modes LTrigram includes features for all lexical item
trigrams, bigrams and unigrams.

4.2. Models over derivation trees

The conditional log-linear model LPCFG-1P, corresponding to PCFG-1P has
one feature for each expansion of each nonterminal in the derivation trees
Ai → αj . For a derivation tree t , it has as value the number of times
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this expansion occurs in the tree. For every expansion Ai → αj , PCFG-
1P has a parameter θij = P(αj |Ai), and LPCFG-1P has a parameter λij .
The number of parameters is thus the same in PCFG-1P and LPCFG-1P.
The probabilities that both models assign to a parse tree t are propor-
tional to the product of parameters corresponding to occurring produc-
tions. The difference is that the weights λij are estimated by maximum
conditional likelihood and not relative frequency (maximum joint likeli-
hood).

The model LPCFG-A corresponds to the generative model PCFG-A.
The features of LPCFG-A were defined using the same decision trees
induced for PCFG-A. A feature was added for every path in the decision
tree (both to a leaf and internal node), and every expansion occurring
at that node. The feature will be active at a node n in a derivation
tree, if the feature values specified by this decision tree path are the
same for n, and if the expansion at n is the same as for the feature.
The feature values for a derivation tree are sums of the feature values
at local trees. Thus LPCFG-A uses a generative component for feature
selection and is not purely discriminative in construction. The correspon-
dence between LPCFG-A and PCFG-A is not as direct as that between
LPCFG-1P and PCFG-1P. PCFG-A uses relative frequency estimates of expan-
sion probabilities at the decision tree leaves and internal nodes, obtain-
ing final estimates via linear interpolation. LPCFG-A also has feature
parameters for leaves and internal nodes, but it multiplies the parame-
ters.

4.3. Models over semantic dependency trees

The model LPCFG-Sem corresponds to PCFG-Sem and its features were
defined using decision trees induced by PCFG-Sem in the same was as
LPCFG-A was defined using PCFG-A.

4.4. Model combination

The combination LCombined is a log-linear model including the features of
LPCFG-A, LPCFG-Sem, and LTagger. Therefore the method of combination is
different for the conditional and generative models. The generative mod-
els were combined by taking a weighted log-sum of the probabilities they
assign to trees. The conditional models were instead combined by collecting
all features into one model. This would be similar to the combination in
the generative models case if we could view the semantic trees, derivation
trees, and tag sequences as independent portions of the analyses.
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5. Experimental Results

We report parse disambiguation results on the dataset described in Table I.
The table lists the characteristics of the 3rd Growth of the Redwoods tree-
bank (Oepan et al., 2004, in press). It is the most recent growth, using
the new October 2002 version of the erg. The sentences listed here have
exactly one preferred analysis and are not marked as ungrammatical. We
have listed statistics for all sentences (ambiguous and unambiguous), and
ambiguous only. In testing, we only consider ambiguous sentences, while
unambiguous ones may be used in training. A previous version of the cor-
pus, the 1st Growth, was used in the experiments reported in the papers
(Oepen et al., 2002; Toutanova et al., 2002, 2003b). The 3rd Growth of
Redwoods is much more ambiguous than the previous version because of
grammar changes and inclusion of highly ambiguous sentences that were
initially excluded.

To illustrate the distribution of ambiguity levels in the corpus, as well as
the related distribution of number of words per sentence, Figure 3 shows
histograms of the number of analyses per sentence in (b) and the percent-
age of sentences by sentence length in (a).

All models were trained and tested using 10-fold cross-validation. Each
of the 10 folds was formed deterministically, by starting from sentence i,
and placing every 10th sentence in the test set. Thus the union of the 10
test sets, for i = 1, . . . ,10 is the complete corpus and they do not overlap.
The unambiguous sentences were discarded from the test sets. The genera-
tive models use the unambiguous sentences for training, but the conditional
log-linear models do not (the unambiguous sentences contribute a constant
to the log-likelihood).

Accuracy results denote the percentage of test sentences for which the
highest ranked analysis was the correct one. Note that this corresponds to
getting the sentence analysis completely right, and is a much more stringent
criterion than evaluating the percentage of labelled constituents or depen-
dencies that are correct, as is more commonly done in statistical parsing
work. Often the models give the same score to several different parses. In
these cases, when a model ranks a set of m parses highest with equal scores

Table I. Annotated corpora used in experiments:
the columns are, from left to right, the total
number of sentences, average length, and average
structural ambiguity

Sentences Length Struct ambiguity

All 6876 8.0 44.5
Ambiguous 5266 9.1 57.8
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Figure 3. Percentage of sentences by length (a) and percentage of sentences by
ambiguity level ranges (b) for the 3rd Growth of the Redwoods corpus.
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Table II. Performance of generative
models for the parse selection task
(exact match accuracy on ambigu-
ous sentences)

Method Accuracy

Random 22.7
Tagger Trigram 42.1

Perfect 48.8
PCFG PCFG-1P 61.6

PCFG-A 71.0
PCFG-Sem 62.8
Combined 73.2

and one of those parses is the preferred parse in the treebank, we compute
the accuracy on this sentence as 1/m. For comparison, a baseline showing
the expected performance of choosing parses randomly according to a uni-
form distribution is included.

Table II shows the accuracy of parse selection using the generative
models described in section 3. The results in Table II indicate that high-
disambiguation accuracy can be achieved using simple statistical models.
The HMM tagger does not perform well on the task by itself in compar-
ison with other models that have more information about the parse. For
comparison, we present the performance of a hypothetical clairvoyant tag-
ger that knows the true tag sequence and scores highest the parses that
have the correct preterminal sequence. The performance of the perfect tag-
ger shows that, informally speaking, roughly half of the information neces-
sary to disambiguate parses is available in the lexical tags.

Using ancestor information in the PCFG models improved parse rank-
ing accuracy significantly over a simple model PCFG-1P – PCFG-A achieved
24% error reduction from PCFG-1P. The PCFG-Sem model has respectable
accuracy but does not by itself work as well as PCFG-A. The performance
of model combination shows that the information they explore is somewhat
complementary. The tagger adds left-context information to the PCFG-A
model (in a crude way) and the PCFG-Sem model provides semantic infor-
mation.

Table III shows the accuracy of parse selection using the conditional
log-linear models. We see that higher accuracy is achieved by the dis-
criminative models. The difference between the generative and conditional
log-linear models is largest for the PCFG-1P model and its corresponding
LPCFG-1P model (28% error reduction). The difference between the gen-
erative and conditional log-linear models for the trigram tagger is small
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Table III. Performance of conditional
log-linear models for the parse selec-
tion task (exact match accuracy on
ambiguous sentences)

Method Accuracy

Random 22.7
CTagger Trigram 43.2

Perfect 48.8
LPCFG LPCFG-1P 72.4

LPCFG-A 75.9
LPCFG-Sem 65.4
LCombined 76.7

and this result is in agreement with similar results in the literature com-
paring HMM and conditional log-linear models for part of speech tag-
ging (Klein and Manning, 2002). Overall the gain from using conditional
log-linear models for the final combined model is a 13% error reduction
from the generative model.

The parse disambiguation accuracy achieved by these models is quite
high. However, in evaluating this level of performance we need to take
into account the low-ambiguity rate of our corpus and the short sentence
length. To assess the influence of ambiguity rate on the parse disambigu-
ation accuracy of our model, we computed average accuracy of the best
model LCombined as a function of the number of possible analyses per
sentence. Figure 4 shows the breakdown of accuracy for several sentence
categories.

The figure displays average accuracy for sentences in the specified ambi-
guity ranges. As expected, we can see that the accuracy degrades with
increased ambiguity. The accuracy is 94.6% for sentences with two possi-
ble analyses and 40% for sentences with more than 100 parses.

We can gain insight into the performance of our best log-linear model
with the current number of features and training data size by looking at
learning curves for the model. Figure 5 shows the accuracy of the model
LCombined when using fractions of growing size from the training data.

The accuracy numbers shown are the average of 10-fold cross-validation
as before. We can see that the log-linear model has enough features for the
available training set sizes and achieves very high accuracy on the training
set. The gap between training and test set accuracy is very large, especially
for a small training set size. We can conclude that for the available training
size, the model is overfitting the training data and it could do better if we
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Table IV. Accuracy of generative models trained using
derivation trees and phrase structure trees

Model Derivation Trees PS Trees Combined

PCFG-1P 61.6 48.5 62.1
PCFG-2P 68.4 60.5 67.8
PCFG-3P 70.7 65.3 71.1

incorporated other non-sparse features, for example by using features from
the hpsg signs.

It is interesting to compare models over derivation trees and phrase
structure trees. Our experiments suggest that the information provided
by the labels in the derivation trees is more helpful for disambiguation.
Table IV shows accuracy results for equivalent models using the two differ-
ent tree representations. We note that ancestor annotation is even more
helpful for phrase structure trees, and that performance is lower for mod-
els trained on phrase structure trees. If we combine the log-probabilities
assigned by models over derivation trees and phrase structure trees, sim-
ilarly to the combination of models in Combined,4 we obtain a model
with slightly higher accuracy for PCFG-1P and PCFG-3P. For PCFG-2P,
the combination is slightly weaker than the model over derivation trees
only.

Based on our experiments, we can make the following observations:
– Overall it is surprising that the PCFG-1P/A and CPCFG-1P/A models over

derivation trees work so well given the nature of node labels which are
schema names and do not in general contain information about the
phrasal types of the constituents.

– The current semantic models PCFG-Sem and LPCFG-Sem do not give
us large performance gains. Perhaps this is due to data sparsity at the
current size of the corpus, or the limitations of the semantic represen-
tation as semantic dependency trees rather than mrs structures.

– The conditional model LPCFG-Sem does not do much better than
the joint PCFG-Sem model. This might be justified by the fact that
although the LPCFG-Sem model will have a lower asymptotic error rate,
it may not be approached due to the sparsity of the training data at
the level of semantic relations (Ng amd Jordan, 2002).

– The overfitting effect of adding a large number of lexical features
is stronger for the conditional model thus making it harder to
improve generalization performance and making careful feature selec-
tion increasingly important.
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6. Error Analysis

We performed a more extensive error analysis for the model LPCFG-3P on
all errors in one part of the data.5 Model LPCFG-3P is a conditional log-
linear model over derivation trees, using as local features the node, its par-
ent, its grandparent, and the expansion. Its overall accuracy was 74.9%.
Since the annotation consistency of the 3rd Growth was improved, we
hoped that the fraction of errors due to wrong annotation would diminish
compared to the 1st Growth (Toutanova et al., 2002), and this was indeed
the case.

For a total of 165 sentences, the model made an error in parse selection.
The error analysis suggests the following breakdown:

– For about 26% of errors, the annotation in the treebank was wrong.
– For about 12% of the errors, both the treebank and the model were

wrong.
– About 62% of the errors were real errors and we could hope to get

them right.
The number of annotation errors is down to 26% from the previously

reported 50% figure in (Toutanova et al., 2002). This shows the quality
of the treebank is indeed improved. Correspondingly, the percent of real
errors is up from 20 to 62%.

A more detailed break-down of the real errors (103 out of 165), in
which the treebank was right and the model was wrong, follows:

– 27 are PP-attachment errors.
– 21 are errors in choosing the correct lexical item.
– 15 are other modifier attachment errors.
– 13 are coordination errors.
– 9 are errors in the complement/adjunct distinction.
– 18 are other errors.

The types of most common errors are similar to the ones observed in
Penn Treebank parsing. Since the Redwoods treebank makes finer grained
distinctions, there are additional error types. The two most frequently
occurring types of errors are PP attachment and lexical item selection.

The PP attachment errors seem to be addressable by better use of
semantic or lexical information as other researchers have proposed, e.g.,
(Hindle and Rooth, 1991; Collins and Brooks, 1995). Most of the time low
attachment is correct as has been observed for other treebanks and the
model does seem to prefer low attachment fairly strongly. But we do not
at present have special features to model low or high attachment and in
future models we plan to add this information.

An example of an error of this sort where the correct attachment is high
is for the sentence “I do not like to go anywhere on Sundays”, where the
model chose to attach the PP on Sundays to anywhere rather than to go.
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For this case the low attachment to anywhere should be strongly dispre-
ferred if there were sufficient lexical information.

Another interesting case of a PP attachment error is for the sentence “I
will put you in my schedule for March sixteenth at one o’clock”. The cor-
rect attachment for the PP at one o’clock is low, as a modifier of March
sixteenth, but the model chose to attach it high to put in the meaning that
the putting in the schedule event would happen at one o’clock and not the
meeting. Again here semantic collocation information would be useful as
for example knowing that people do not usually talk about entering infor-
mation in their schedules at a particular time.

The second largest type of errors are cases where the lexical item for
a word was not chosen correctly. An example of this is for the sentence
“Yeah, that is about all”. The model selected the meaning of about as a
preposition, whereas the preferred analysis of about in this case should be
as a degree specifier. In addition to being very common as a degree speci-
fier in our corpus domain, about is also very common in the collocation
about all. So again lexical information should be useful. Another similar
case is the sentence “But we are getting real close to the holidays”. The
model did not select the correct meaning of real here as an adverb but
chose the meaning of real as an adjective which could be a possible mean-
ing in this sentence in fairy-tales but quite improbable in the domain of
appointment scheduling.

Another amusing lexical error was for the sentence “You said you were
getting in Tuesday night”. The model selected the rare meaning of in as an
abbreviation for Indiana.6 This is not semantically plausible in this sentence
and domain as people should not normally get states.

In summary we think that more lexical information will help resolve
attachment and lexical ambiguities despite possible problems of data
sparseness. We can expect that increasing the corpus size will be help-
ful to obtain better word-specific statistics for our current models. Auto-
matic clustering or exploring existing lexical hierarchies could also improve
our modeling of semantic preferences. Since our current experiments sug-
gest that there are not very big gains from the semantic dependencies
model, further research is necessary to resolve this conflict of intuition and
results.

7. Conclusions and Future Work

This article has detailed our initial experiments on hpsg parse disambigu-
ation using statistical models. We demonstrated the usefulness of building
models over derivation trees of hpsg analyses and showed how they can be
supplemented with semantic and lexical item sequence information for sig-
nificant accuracy improvement. A particularly useful feature of our experi-
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ments is that they show paired comparisons of generative and conditional
models with exactly the same features. While there is considerable evidence
from various domains on the value of discriminative models, and they have
been successfully used for parsing, there is a lack of extant results show-
ing comparisons between otherwise identical parsing models, and carefully
showing the value of the conditional models, as we have done. Use of con-
ditional models always delivered a very useful performance boost, but an
interesting result was that the conditional model gave the greatest value on
the simplest model, where the independence assumptions of the generative
model were most greatly violated, and where most value could be gained
by not just weighting features according to their relative frequency.

The work presented here should be viewed as only a first round of
experiments: we have barely dug into the rich syntactic and semantic
information available in the Redwoods treebank. In future work we intend
to build more complex probabilistic models capable of using more infor-
mation from within a sentence, and indeed from prior discourse informa-
tion, for prediction. One particular avenue of interest is effectively using
semantic representations for disambiguation: we have so far only gotten
quite limited value from our semantic dependency trees, and hope to get
more value from the full mrs semantic representations. This requires more
complex modeling, because of the non-tree structure of these graphs, but
can be suitably handled within the conditional log-linear model frame-
work we have already been using. We also plan to explore finding and
using other features within the full hpsg sign which are useful features for
disambiguation. Such simple features as syntactic category, clause finiteness
and agreement presumably have considerable value, and through the fea-
ture equality principles of hpsg(such as the Head Feature Principle and the
Nonlocal Feature Principle), they could be accessed in the sign where they
are relevant, rather than being imperfectly captured as long distance infor-
mation within the derivation tree. Some experiments exploring these ideas
appear in Toutanova et al. (2003a).

It is in many ways a quite surprising result that our system can deter-
mine the correct parse in over 76% of cases, without using any discourse
context or world knowledge beyond statistics latent in the corpus. While
in part this reflects the fact that the domain of scheduling dialogs within
the Redwoods corpus is fairly straightforward, it nevertheless also shows
the great leverage on the ambiguity resolution problem that can be derived
from the combination of rich precise grammars together with probabilistic
frameworks for evidence combination and adjudication. We eagerly antici-
pate the next generation of more complex models that integrate many other
sources of relevant information, and which hence provide an even more
satisfactory solution to the resolution problem.
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Notes
1 For an introduction to hpsg, see (Pollard and Sag, 1994; Sag and Wasow, 1999).
2 This derivation tree is also the fundamental data stored in the Redwoods treebank,
since the full sign can be reconstructed from it by reference to the grammar.
3 For an introduction to PCFG grammars see, for example, the text by Manning and
Schütze (1999).
4 We used fixed interpolation weights λ1 = 0.7 and λ2 = 0.3 for derivation and phrase
structure trees.
5 The section corresponding to one of the treebanked Verbmobil CDs – CD32.
6 Note that these sentences are a transcription of spoken dialogues so capitalization infor-
mation is not reliably available in the data.
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HPSG Treebank for Polish. In Journée ATALA, 18–19 juin, Corpus annotés pour la synt-
axe. Paris, pp. 97–105.

Marcus M. P., Santorini B., Marcinkiewicz M. A. (1993) Bulding a Large Annotated Corpus
of English: The Penn Treebank. Computational Linguistics, 19, pp. 313–330.

Ng A., Jordan M. (2002) On Discriminative Vs. Generative Classififiers: A comparison of
logistic regression and Naive Bayes. In NIPS 14.

Oepen S., Flickinger D., Toutanova K., Manning C. D. (2004) LinGO Redwoods. A Rich
and Dynamic Treebank for HPSG. Journal of Language and Computation.

Oepen S., Toutanova K., Shieber S., Manning C., Flickinger D., Brants T. (2002) The LinGo
Redwoods Treebank: Motivation and Preliminary applications. In COLING 19.

Pollard C., Sag I. A. (1994) Head-Driven Phrase Structure Grammar. University of Chicago
Press, Chicago.

Riezler S., King T. H., Kaplan R. M., Crouch R., Maxwell J. T., III, Johnson M.(2002)
Parsing the Wall Street Journal using a Lexical-Functional Grammar and Discriminative
Estimation Techniques. In Proceedings of the 40th Meeting of the Association for Com-
putational Linguistics.

Sag I. A., Wasow T.(1999) Syntactic Theory: A Formal Introduction. CSLI Publications,
Stanford, CA.

Simov K., Osenova P., Slavcheva M., Kolkovka S., Balabanova E., Doikoff D., Ivanova K.,
Simov A., Kouylekov M. (2002) Building a Linguistically Interpreted Corpus of Bulgar-
ian : The BulTreeBank. In Proceedings of LREC. Canary Islands, Spain, pp. 1729–1736.

Srinivas B., Joshi A. K. (1999) Supertagging: An Approach to Almost Parsing. Computa-
tional Linguistics, 25, pp. 237–265.



STOCHASTIC HPSG PARSE DISAMBIGUATION 105

Toutanova K., Manning C., Oepen S., Flickinger D.(2003a) Parse Selection on the Red-
woods Corpus : 3rd Growth Results. CS Technical Report, Stanford University.

Toutanova K., Manning C. D. (2002) Feature Selection for a Rich HPSG Grammar Using
Decision Trees. In Proceedings of the Sixth Conference on Natural Language Learning
(CoNLL-2002).

Toutanova K., Manning C. D., Flickinger D., Oepen S. (2002) Parse Disambiguation for a
Rich HPSG grammar. In Treebanks and Linguistic Theories. Sozopol, Bulgaria.

Toutanova K., Mitchell M., Manning C. (2003b) Optimizing Local Probability Models for
Satistical Parsing. In Proceeding of the 14th European Conference on Machine Learing
(ECML). Dubrovnik, Croatia.

Trueswell J. C. (1996) The role of lexical frequency in syntactic ambiguity resolution. Journal
of Memory and Language, 35, pp. 566–585.

Vapnik V. N. (1998) Statistical Learning Theory. Wiley, New York.
Witten I. H., Bell T. C. (1991) The zero-frequency problem: Estimating the probabilities of novel

events in adaptive text compression. IEEE Trans. Inform. Theory, 37(4) pp. 1085–1094.


