
Project: Maximum Entropy Tagger
Project report INF5830

Lars Bungum

November 27, 2007

1 Introduction

The framwork for this project is a term project for the course INF5830 at
UIO, in which one of the taught NLP technologies were to be tried out.
This needs a mention, because in particular the final of my test runs gave
a very fine result. Being a student, though, I boldly risk the submission of
these results, prior to thorough scrutiny of my implementation, particularly
evaluation.

Work with the project was largely divided in two parts, namely cre-
ation of proper features for a Maximum Entropy Tagger (henceforth: Max-
Ent) and then implementing an algorithm to decode the optimal sequence
of tags given an input text. For each literal word there is a part-of-speech
(POS) tag, and I will use the first 21 sections of the PBT to extract infor-
mation about under which conditions each POS-tag is handed out to a
previously not seen word (from a section not used in training), facilitated
through a MaxEnt approach. Inspiration was drawn from the curriculum
article of Ratnaparkhi [1] although my actual model ended up looking quite
differently in terms of both search and feature selection.

2 The data

The data being used was the Penn Treebank (PBT) consisting of 24 years
of the Wall Street Journal (WSJ). The treebank is annotated in a convenient
format, with a tree structrure like this:

1 ((S
2 (NP−SBJ
3 (NP (NNP Donald) (NNP Trump))
4 (\ , \ ,)
5 (SBAR
6 (WHNP−1 (WP who))
7 (S

1

8 (NP−SBJ (−NONE− ∗T∗−1))
9 (VP (VBD faced)

10 (NP
11 (NP (VBG r i s i n g) (NN doubt))
12 (PP (IN about)
13 (NP
14 (NP (PRP$ h i s) (NN bid))
15 (. . .)

There is more annotated information here than I need in my project,
and I consequently extract the bottom layer of the structures, which is a
Lisp SEXP with a list of two elements, both of which are atomic. My code
checks for this, which means I extract from the first two lines nothing (no
such lists) and from line 3 (NNP Donald) and (NNP Trump), and from line
4 (\, \,). For each literal word in the PBT there is such a pair, which I use
for training, and later testing of my tagger.

I use sections 0-21 for training and section 23 for tagging. I see that
this deviates slightly from the results posted at http://aclweb.org/
aclwiki/index.php?title=POS Tagging (State of the art), but
mostly the same.

3 MaxEnt Approaches

The MaxEnt approaches has their name from Information Entropy, seeking
to extract the weight distribution that has the highest entropy, but still fits
the data, in order not to assume more than you can about the data material.
For the task of tagging, the problem is to select the most likely category for
a given word, in its context. An aribtrarily large set of binary features can
be created, that are either 1 or 0 in the given context. If the suffix is “ing”
and the previous word is is then the word before that is am, this word is
likely to be a verb, but if it is favorite its more likely to be a noun. One can
here select features for each word in question during training, and see if
you find them again during testing. So even though you might not find
the exact same word sequences, you’re likely to find at least some of them.
And the bounty of the MaxEnt probability distribution is that you get the
weights for each feature, that in turn can be used to select the appropriate
category. Timely to prove, this results in an equation that gives you the
probability of a category given a context like this:

P (c|x) =
1
Z

exp

∑
a

λafa(c, x)

where only it can be shown that it is sufficient to maximize only the
sum expression above, to get the most likely category. That means you
don’t need to calculate the normalization factor (the exping of all possible

2

contexts) to get the maximum category, but you need it to get an actual
probability.

That, however, gives you the optimal category (POS) of a word in its
context, but computing these standalone does not necessarily give the best
sequence, which is what you are interested in POS-tagging, because previ-
ous tags can be included in the feature set.

4 The experiment

4.1 TADM

As I mentioned briefly in the introduciton I roughly split this project in half,
where half it was about extracting the features from the training corpus and
feeding them to The Toolkit for Advanced Discriminative Modeling, tadm,
http://tadm.sf.net. That means I developed code for extracting the
above-mentioned data pairs and then extracting features from them and
writing them to a file that could be used as input to tadm. I chose the file
format of the python scripts, mainly beause its easier to read than digi-
tal feature files, but also because they contained some nice features like a
model storage. I added a function to them that exported the model at last to
an easy readable SEXP format for later use in other scripts. The file format
looks like this:

IN PREVWORDĪN PREPREVWORD=INSTALLED PREPREPRE-
VWORD=* CURRENTWORD=AFTER NEXTWORD=THE NEXTNEXTWORD=OCTOBER
NEXTNEXTWORD=1987 PREVTAG=INPREPREVTAG=VBN PREPREPREVTAG=-
NONE-

A feature is created for each of these equations, coupled with the possi-
ble POS-tags, for example ((PREPREVWORD=INSTALLED) IN) , a feature
that receives the value one for contexts where the pre-previous word is IN-
STALLED with the POS IN. After a bit of hard work on the part of campus
hardware, weights are returned for all of these features. I did not go into
the inner workings of these algorithms at all, although I did “black box”
compare the output of tadm on a couple of different machines.

4.2 The context cocept/Initial features

For each word I generated a context, implemented through a (7 2)-dimensional
array in LISP, looking like this:

3

1 IN PREPREPREVWORD PREPREPREVTAG
2 INSTALLED PREPREVWORD PREPREVTAG
3 * PREVWORD PREVAG
4 AFTER CURRENTWORD
5 THE NEXTWORD
6 OCTOBER NEXTNEXTWORD
7 1987 NEXTNEXTNEXTWORD

this is also acting like a FILO buffer where the context is “bumped” for
each new word in the observation sequence (words to be tagged). I think
it is fairly easy to see how the features are extracted, and after that is done
for this word, the context is bumped into a new one looking like this:

1 INSTALLED PREPREPREVTAG PREPREPREVTAG
2 * PREPREVWORD PREPREVAG
3 AFTER PREVWORD PRETAG
4 THE CURRENTWORD
5 OCTOBER NEXTWORD
6 1987 NEXTNEXTWORD
7 NNP CRASH NEXTNEXTNEXTWORD

from which features are again extracted. This also shows my first fea-
ture choice. These are very basic features, but once I had the feature ex-
traction scheme working, I focused on the implementation of the Viterbi
algorithm for a MaxEnt Markov Model (henceforth: MEMM) which for me
was by far the most challenging task. I estimated that after that was accom-
plished it would be easy (although time-consuming) to refine the selection
of features, which also proved to be the case. I used the weights from this
run to develop the MEMM though, and I refer to it as the “Simple First
Run”.

4.3 The “Gold Standard Run”

When I extracted feature files for training, I also processed section 23 for
testing in the same way. This left me with a feature file where all previous
tags were entirely correct, as if I wanted to train on section 23. But what I
instead did was to use a nice feature of the tadm Python script fauna, that
evaluates a feature file like this and counts how many time your model
predicts the tag that should be there according to the feature file. I refer to
this as the “gold standard run”, because it is a measure of how good the
MaxEnt model is, because it gives you the accuracy of predictions where
the history of the sequence is always right.

Obviosuly when you do decodeing you are working out the sequence
yourself, but I found it useful as a ceiling for how good the tagger can get,
given the model in question.

4

4.4 The “No Standard” run

Similarly I created a feature file erasing all tag history, which shows how
you would do if you only knew the words in the context, and never even
guessed about the last tag. I interpret this as the floor of bad the search
algorithm can be given the model, you are in trouble if you get a worse
sequence than the easy-computable one without tag history.

4.5 Feature refinement

After I was able to decode a sequence close to the “Gold Standard” run in
quality I returned to refining the features. Due to resource issues I first ran a
trimmed model with the only difference being that the model was now case
sensitive, and adding bigram and trigram features, that is the combination
of PREVTAG and PREPREVTAG in one feature, and the combination of
PRE-PREPREV-PREVTAG in one feature ((PRE-PREPREV-PREVTAG NNP-
VBD-NN) IN) as an example. In the refined versions, I also set the readtable
up, so that I could preserve case-sensitivity of words.

Finally I was able to do a full run with the features in the above para-
graph as well as 3-letter suffix and prefix information for all 7 words of
context. This resulted in a very heavy model, with 1 498 134 active out of a
total of 21 519 966 features.

For the feature refined models I only did a “Gold Standard Run” es-
tablishing their ceilings. I interpret the relative results of the simple model
to the Gold Standard Run as a measure of what I could expect of viterbi
decoding of them.

4.6 The Viterbi decoding of a MEMM

A MEMM is similar in its appearance to a HMM, in the sense that you
compute a trellis containing the probablility, delta, of being in a certain
state at a certain time (in POS-tagging the state represents a POS like in a
HMM), but is very different in the computation. Although the computation
of the delta(state,time) depends on both the previous tag and the current
observed word, the computation is done in one. So you as I iterate over
the previous states to maximize the product of delta(s’,t-1) (s’ representing
a choice of s’ from | S | and the probability of attributing the current tag
given the observed word and other context, the information about which
tag is currently s’ has to be baked in to the context.

Given a context as shown above, the (2 0) entry, the tag of the second slot
has to be entered for all the states you iterate over, and the probability of
being in the state you are actually in, in the trellis has to be computed. This
is not a maximization problem, but it is the problem of computing being
in a given state at a given time. Of the 46 states, 46 are always suboptimal

5

in the trellis. So you are interested in the probility of being in each state,
representing a POS given all the different states as PREVTAG in turn, times
the probability of being in just that state in the previous time step. The
maximum of this product (combination of PREVTAG inside and outside
context) is then slotted into the new delta cell. When you’re at the end of
your trellis, the highest delta is chosen, and you unwind the sequence.

I refer to Roman Finkelsteins (in German) http://www-ai.cs.uni-dortmund.
de/LEHRE/PG/PG520/MATERIAL/MEMM.pdf presentation for a very good
step-through show of the Viterbi decoding of a MEMM, that shows what
I just stated in a diagram. Even after seeing int visualized like this it was
still challenging to actually implement it, as it means the generation of so
many different contexts from which the feautres are extracted and then cat-
egorized. Each time you set the PREVTAG of your current context to the
s’ from iteration, the PREPREVTAG and PREPREVTAG that are optimal
choices in delta(s’,t-1) must also be unwound before computation.

I have based my implementation of the Viterbi MEMM on Robert Wilen-
skys lisp code implementations of a HMM, written at a much higher level
of sophistication than what I do from scratch, possibly standing out a lit-
tle. This was though quite severly adapted to faciliate the decoding of a
MEMM instead of a HMM. http://www.cs.berkeley.edu/∼wilensky/
lispcraft/

4.6.1 Assumptions

Preprocessing. The files for training are not used directly from the PBT,
but run through a sed filter, that escapes special characters, such as punc-
tiation marks, that have special meanings in Lisp. For me it was easier to
filter the files first, instead of making further changes to the readtable as the
files were loaded. I don’t think this step is significant to the performance,
though.

I reset the context buffer after each file, representing a hundreth part of a
WSJ year, making the assumption that the beginning of the next section part
(one of the hundred files) is independent of the last word in the previous
section. It seems reasonable, but it is a choice on my part nonetheless, and
should be mentioned. Viterbi decoding is run for each sentence (SEXP),
which is short enough to avoid any problems with the probabilities getting
too small for the computer to handle, which will happen at some point in
an infinate Markov Model, as the probability of being in a given state in
a given time is either equal or reduced compared to the top choice of the
previous time step.

6

5 Results

Model Gold Standard No Standard Viterbi MEMM
First run 0.9564 0.91763043 0.938118 (1-74) / 0.94893193 (75-99)
First refinement 0.96676964
Second (full) refinement 0.98.1486680649

The two values for the Viterbi MEMM decoding are because of an im-
provement in the algorithm. I think evaluating sections 74-99 is enough
to say something about the accuracy, but I want to be specific about what
was actually done. I would think this is an indication about how close we
should be able to get to the other Gold Standard Runs as well, but this com-
putation is very heavy (12 hours for the entire section 23), and it was only at
the finishing stretch of the project I had both a Viterbi decoder and refined
feature weights, so I didn’t get to test that out.

As I noted in the introduction these results are very good. I have not
tweaked any other settings, as for instance a Gaussian Prior variance, or a
trehshold for which features to omit (because of low frequency). When this
is done in the literature there has always been improvement, so until dis-
proven I assume this would be possible also here. But I choose the humble
approach, there can be something here I didn’t think of.

One thing I can think of noted is that I do not delete -NONE- tags for
traces. And since the feature for attributing the NONE tag for a NONE
pseudo-word (all traces are conveniently equipped with these) has a very
high weight, since the NONE word is always NONE, and same for traces,
this obviously boosts accuracy, with having such easy features that you
always get right.

I also think it should be noted that the scores for the simple run are
quite high, at least to me, given just its simplicity. In this run, everything
was also upper case, using a standard lisp readtable. This was changed in
the refined models.

For the second refinement, I made sure to rerun that, and from what I
can see the model is capable of coming up with these tags, without know-
ing them from beforehand. And the way of measuring it is very easy, you
have the right tag, or you don’t.

6 Evaluation

Obviously the viterbi decoding is the most interesting part, because that’s
what the WSJ POS-tagging task is really about, and I should have (will) try
that for the bigger models. Part of the reason I couldn’t do it was because
the actual export of the huge text files used to transfer the model into lisp

7

takes so many hours that I chose to drop it, to at least collect Gold Stan-
dard values. But I had the one for the Simple Run, that I have used for
development.

I mentioned already the inclusion of NONE-tags. They could also have
been taken out in a test run.

I should also have conformed to the WSJ POS-tagging task from the
ACL Wiki, making my results directly comparable to the posted results
there. I can not see how using the section choices from there would have
made my task computationally more difficult, although it is likely to have
diminished results slightly, because of less training and more testing data.

And obviously the point about review, since the results are so encour-
aging even before any parameter tweaking is done. Possibly this is because
of my “greed” just adding a very large number of features whose compu-
tation were made tractable only by the availability of a fast machine.

7 Discussion

7.1 Complexity of Viterbi decoding

In the way I have implemented the decoder, I need to extract probabilities,
and not only maxima as explained above in section 4.6. I have given it
some thought, but I still maintain the position that you need to compute the
entire probability distribution of each context in the MEMM trellis, because
you are not looking for the most likely category at each point, but on the
other hand the exact probability of an exact tag, that most likely is not no
be found in the optimal sequence.

Obviously I’m not in a position to rule out that the problem has a sim-
pler mathematical solution, but I think it will be difficult, because the con-
text from wich the probability distribution is computed is different in each
state. You don’t maximize over states in the trellis before you are at the last
time step, where you find the highest probability and start unwinding the
optimal sequence (stored in the psi array in my implementation).

7.2 Relation of Viterbi decoding to Gold Standard runs

Now that I have the infrastructure, the decoder and binary models of both
the refined run, the answer for my bigram model would be an easily solved
empirical question in terms of complexity, but not time. The binary models
can be loaded into the tadm Python and text models can be written from
them, which can be loaded into lisp and the decoding can be run on section
23 with out any acutal programming to the model. My expectation though
is that the difference between the gold standard and the viterbi decoding
would be comparable. Most likely the floor performance of the model is
higher as well, and this gives you a very good chance of making the right

8

desicion at one time point, that will make it even easier to get it right the
next time, and so on. Because of this, I don’t think that the improvement
by going to a trigram MEMM creating (* 46 46) virtual states, with having
to create 46 times as many contexts at each point in the run would help
significantly. You would get a better sequence, but at a very small rate of
improvement is my intution.

Continuing to shoot from the hip, I would expect that you need a n-
gram MEMM corresponding to the depth of TAG history you store in your
model to be sure of decoding the optimal sequence, in my case a quadgram
model with 464 or 4 477 456 virtual states. I don’t know how to prove this
either theoretically or empirically though.

7.3 Further work

It will be interesting to see how the MEMM copes with the much heavier
models in terms of computational time and performance. This would be
the first thing I would like to try out, since I can’t see how this would be a
problem just doing at this point, although it obviously will require many a
CPU hour.

7.4 Error analysis

I compared my errors (which tokens were most often mistaken with which)
to Ratnaparkhis error analysis from 1996, but I don’t think that was so inter-
esting. First of all my errors were from the Gold Standard Run of the flawed
Simple Run Model, and then because different features were used, different
unsurprisingly came about. It is perhaps possible to not that his features,
focussing more on suffix of the current word were more “lexically” strong
avoiding as many NN for NNP errors as my Simple Run had.

It would be more interesting to do an error assesment again of a full
viterbi decoder based on the heaviest model.

References

[1] Adwait Ratnaparkhi. A maximum entropy model for part-of-speech
tagging. In Eric Brill and Kenneth Church, editors, Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages
133–142. Association for Computational Linguistics, Somerset, New
Jersey, 1996.

9

