
Algorithms for AI and NLP (Fall 2008, Exercise 2)

Goals

1. Understand better the use of (nesting) lexical bindings and the functions push() and pop();

2. design a datastructure and associated functions to read and manipulate FSAs;

3. experiment with alternate representations for the transition matrix, investigating efficiency.

1 Bring up the Editor and the Allegro Common Lisp Environment

• As always, start our integrated Lisp development environment, by typing (at the shell prompt):

acl &

• For this session, we provide three files—‘sheep.lsp’, ‘brown.lsp’, and ‘krugman.txt’—which contain
textual representations of two FSAs (see below), as well as a random sample of text taken from the New
York Times web page. Our course setup should have copied the file ‘sheep.lsp’ into your IFI home
directory already, and the other two will also occur there before the end of this week. We recommend
that you create a new file, say ‘exercise2.lsp’, and start developing your code there. That is, rather
than typing directly into the Lisp prompt (through the emacs ‘*common-lisp*’ buffer), put all your code
into ‘exercise2.lsp’ from the beginning. You can then use emacs commands like ‘M-C-x’ (evaluates
the top-level s-expression currently containing the cursor) or ‘C-c C-b’ (evaluates the entire buffer) to
interactively load your code into the Lisp system; remember that, after each change you make in the
file ‘exercise2.lsp’, you need to re-evaluate the code before your changes will take effect. For testing
purposes, we still recommend you use the ‘*common-lisp*’ Lisp prompt.

2 Local Variables and Lexical Binding

(a) Consider the following definitions for two global variables and one function.

? (defparameter foo 4) → foo

? (defparameter bar 2) → bar

? (defun mystery (foo)

(format t "~a~%" foo)

(format t "~a~%" bar)

(let ((foo 2)

(bar (+ foo 10)))

(format t "~a~%" foo)

(format t "~a~%" bar)

(let* ((foo 3)

(bar (+ foo 10)))

(format t "~a~%" foo)

(format t "~a~%" bar))))

→ mystery

Explain the print-out that results from each of the format() calls in the body of mystery() when evalu-
ating ‘(mystery 42)’. Maintain a table to keep track of the values for foo and bar at each step.

(b) The built-in Common-Lisp special forms push() and pop() manipulate lists with a stack semantics (last-
in, first-out), e.g.

? (defparameter *stack* ’(1 2 3)) → *stack*

? *stack* → (1 2 3)

? (push 0 *stack*) → (0 1 2 3)

? *stack* → (0 1 2 3)

? (pop *stack*) → 0

? *stack* → (1 2 3)



Experiment with push() and pop() and consider writing functions that have the exact same behaviour.
Why is it impossible to (re-)implement push() and pop() as functions?

3 Implementing and Reading FSAs

(a) To represent FSAs in our code, we will implement an abstract data type. Define a structure fsa, with
components vocabulary, transitions, final, and size. We will use the vocabulary component to record—as
a set of symbols (implemented as a list)—the legitimate input symbols for our machine. The transitions

component in fsa will contain a representation of the transition matrix, and we will experiment with
different ways of encoding that information in Lisp. The final component will hold a set of integers (again
implemented as a list), indicating which of the states are final (i.e. accepting) states. Finally, the value
of size will be an integer, indicating the total number of states in the machine. To encode the states
themselves, we will use integers, consecutively numbered, starting from zero. By convention, the initial
state of our machines will always be numbered zero.

(b) Take a look at the file ‘sheep.lsp’ (provided through our course setup) and make sure you understand
how the information in the file corresponds to the ‘sheep talk’ example of Jurafsky & Martin (2008). To
get started, we will use a very simple-minded representation for the transition matrix, viz. as a simple set
of transitions (once more implemented as a list), each in the exact same form as we use in ‘sheep.lsp’.

Write a function read-fsa() that takes one argument, a file name corresponding to a textual FSA rep-
resentation; the function should read s-expressions from the file until it reaches the end. It needs to
distinguish two types of s-expressions, lists and integers (corresponding to transitions or final states,
respectively); read-fsa() constructs an fsa instance and fills in the components of the structure with in-
formation read from the file. For example, constructing a machine from ‘sheep.lsp’ should look somewhat
like this:

? (setf fsa (read-fsa "~/sheep.lsp"))

→ #S(FSA :VOCABULARY (! A B)

:TRANSITIONS ((2 A 3) (3 ! 4) (3 A 3) (1 A 2) (0 B 1))

:FINAL (4) :SIZE 5)

Note that read-fsa() needs to determine the data type of each s-expression that it reads from the file,
which can be either a list or an integer. We have seen the predicate to test whether an object is a list
already; see whether you can guess (or find) the name of the predicate that returns true for integers.
Further note that, when using lists to represent sets, there is a convenient variant of push() called
pushnew(), which will avoid creating duplicate elements. Thus, the following equivalence holds:

(pushnew X Y ) ≡ (unless (member X Y ) (push X Y ))

Finally, note that the Lisp reader—when asked to read an s-expression from a stream—will ignore com-
ments, i.e. all lines in our FSA files starting with a semikolon (‘;’). Hence, you need not do anything
special to read over those comments.

(c) To practice (among other things) the use of the fsa structure, the mighty loop() facility, and beautifully
formatted output, write a function that prints out the transition matrix, one line per state, where states
occur in numeric order. That is:

? (print-fsa fsa)

→ 0: ‘B’ -> 1

1: ‘A’ -> 2

2: ‘A’ -> 3

3: ‘A’ -> 3, ‘!’ -> 4

4: [final]

Note that our current internal representation of the transition matrix is not organized in any particular
order. But print-fsa() needs to output all outgoing transitions from a given state on a single line,
and then move on to the numerically following state. One option would be to pre-process the transitions

elements inside of print-fsa(), i.e. go through the list once—before producing any printed output—and
prepare an auxiliary ‘index’ (local to print-fsa()): for each state in the machine (represented as an



integer), the index should contain all transitions originating at that state. What would be a suitable
data structure to represent the index? Another option would be to impose an ordering on the transitions

component in our machine, i.e. make sure that its elements are numerically sorted, according to the state
from which they originate (i.e. the first() of each transition).

(d) Next, write a function next-states() to return the set of possible states to transition into, given a
machine, the current state, and one input symbol; e.g.

? (next-states fsa 3 ’a)

→ (3)

? (next-states fsa 3 ’b)

→ nil

(e) Finally, translate the function nd-recognize() from our initial lecture on FSAs (see the slide copies) into
Common Lisp. Here are some example calls:

? (nd-recognize fsa ’(b a a a a a a a a a a !))

→ t

? (nd-recognize fsa ’(b a a a a a a a a a a))

→ nil

? (nd-recognize fsa ’(b a a a a a a a a a a h !))

→ nil

Note that, to retrieve the next input symbol (at position index, using the naming conventions from our
slides) we recommend the built-in Lisp function elt(). Please look up the definition of elt() and observe
how it is very similar to nth(). So, what is the difference between the two functions, and why do you
think we recommend elt() rather than nth()?

(f) To test our implementation of nd-recognize() on a machine that actually is non-deterministic, write
down an FSA that recognizes the language {aaa, aaaa, aaaaaa, aaaaaaaa, aaaaaaaaa, ...}. This language
has a singleton vocabulary (containing only the symbol ‘a’), and it contains sequences of n repetitions
of ‘a’, where n is either a multiple of three or of four. Consider sketching the machine as a state-and-
transition diagram, using ‘pencil and paper’ first. Then read off the transition matrix from your sketch,
and create a file ‘as.lsp’ containing the definition of the automaton—using the same notation we used for
‘sheep.lsp’ above. Read the machine from your file and test it on several inputs; make sure everything
works as it should. Please include the testing calls you used in what you submit.

4 Implementing and Reading FSAs

(a) Our current implementation of the transition matrix is somewhat inefficient. Assuming you implemented
next-states() as a loop(), how many iterations are there for each call to next-states()? And in case
you wrote next-states() as a recursive function, how often does it call itself recursively for each top-level
entry into the function? Thinking back to what we had to do in printing our machines, say in a sentence
or two how the efficiency of our current FSA implementation could likely be improved.

(b) Write a function symbol-code() that, given a machine and one input symbol, maps each symbol from
the vocabulary of the machine to an integer between 0 and n− 1, where n is the size of the vocabulary of
the machine. For invalid input symbols, symbol-code() returns nil. For example:

? (symbol-code fsa ’b)

→ 2

? (symbol-code fsa ’h)

→ nil

(c) Now that we have a way of ‘projecting’ our input symbols into consecutive integers, write a function to
‘compile’ a machine, converting our original representation of the transition matrix into an actual matrix,
i.e. a Lisp array. How many dimensions do we need in our array, and how many cells along each dimension?
The function compile-fsa() takes as its sole input a machine, converts its transition matrix into an array,
and then destructively changes the transitions component of its argument. This is the kind of function
that is mostly interesting for its side-effect, so it does not matter what it returns as its value; but it may
be convenient to let it return the newly created array, i.e. the compiled transition matrix. For example:



? (compile-fsa fsa)

→ #2A((NIL NIL (1)) (NIL (2) NIL) (NIL (3) NIL) ((4) (3) NIL) (NIL NIL NIL))

(d) What remains to be done is adapt next-states() to operate on the new internal representation of the
transition matrix. Make the necessary changes to next-states() and then decide whether we also need
to make changes to nd-recognize(); if so, apply those changes.

Go back to our earlier examples (sheep talk and the silly ‘a’ language) and make sure your revised
implementation still obtains all the correct results. If not, debug your new code and repeat the testing
until all is ‘hunky and dory’ (that is, correct). Celebrate appropriately.

To actually observe differences in the speed of execution, we will need a slightly larger automaton. The file
‘brown.lsp’ contains a machine that will accept all unique word types from (our abbreviated version of)
the Brown Corpus. Make sure that you are using compiled code, i.e. use one of the commands from the
Allegro – emacs interface to compile and load your complete ‘exercise2.lsp’. Or simply use the Allegro
top-level command ‘:cl’ to accomplish the same; e.g.

? :cl exercise2.lsp

; ;;; Compiling file exercise2.lsp

; ;;; Writing fasl file exercise2.fasl

; ;;; Fasl write complete

; ; Fast loading exercise2.fasl

As in earlier examples, observe that we use the ; symbol to indicate printed output to the terminal, not

indicating the result of evaluation. In fact, the Allegro top-level commands (all starting with a colon, i.e.
all named by keyword symbols) are meta-level instructions to the Lisp system rather than s-expressions
to be evaluated. Hence, they can deviate from standard Lisp syntax (‘:cl exercise2.lsp’ is not a
well-formed s-expression), and they are not evaluated in the standard sense.

Read the FSA from ‘brown.lsp’ and make sure you can apply it sucessfully. Now take a peek at the
additional file ‘krugman.txt’, which contains one recent article from the New York Times (NYT), con-
veniently presented to us in plain text form, with one word per line. Similar to our corpus experiments
in the first problem set, read the article into a list of strings, i.e. a list whose elements are the individual
words from the file ‘krugman.txt’.

Finally, use the FSA recognizing the most frequent words in the Brown Corpus to identify the new words
in the NYT article. To apply our FSA implementation to strings (rather than to lists of symbols, as we
have done so far), which changes—if any—need to be made to the code? How many new words are there?
Can you see a difference in using the FSA with the original, näıve internal representation of the transition
matrix, as opposed to our compiled variant? Note that Lisp provides an operator time(), which takes
as its argument an s-expression: time() evaluates its argument and afterwards reports on cpu time and
memory usage. For example:

? (let ((aaa (loop repeat 1000 collect ’a)))

(time (nd-recognize fsa (append ’(b) aaa ’(!)))))

; ; cpu time (non-gc) 220 msec user, 10 msec system

; ; cpu time (gc) 0 msec user, 0 msec system

; ; cpu time (total) 220 msec user, 10 msec system

; ; real time 235 msec

; ; space allocation:

; ; 677,751 cons cells, 7,410,864 other bytes, 0 static bytes

→ t

5 Submitting Your Results

Please submit your results in email to Stephan (‘oe@ifi.uio.no’) and Lars (‘larsbun@ifi.uio.no’)
before 12:00 noon on Tuesday, October 7. Please provide all files that you created as part of this exercise
(e.g. minimally ‘exercise2.lsp’ and ‘as.lsp’, if you folllowed our suggestion above), including all code
and answers to the questions above. Note that it is good practice to generously document your code with
comments (using the ‘;’ character, making the Lisp system ignore everything that follows the semicolon).


