
Algorithms for AI and NLP (Fall 2008, Exercise 4)

Goals

1. Understand fully the generalized chart parser; unpack complete trees from the parse forest;

2. practice reading off grammar rules from a treebank; estimate conditional PCFG probabilities;

3. implement the destructive unifier and a structure-preserving copy function for feature structures.

1 Bring up the Editor and the Allegro Common Lisp Environment

• As always, start our integrated Lisp development environment, by typing (at the shell prompt):

acl &

• For this session, we provide several files (of which some will be released a little later this week). For the
first part of the exercise, ‘chart.lsp’ provides a complete and functional implementation of the general
chart parser (an improvement over the CKY parser), as discussed in the last two lectures.

• A this point, you should do virtually all your programming in the Lisp source files, i.e. ‘chart.lsp’ for the
first part of the exercise, and make sure to use emacs commands like ‘M-C-x’ or ‘C-c C-b’ to interactively
load your code into the Lisp system.

2 Unpacking Parse Trees from Chart Edges

(a) The generalized chart parser computes a parse forest in polynomial time, i.e. a data structure that takes
advantage of what we call ‘packing’ (or factoring) of local ambiguity: for each sub-string of input for which
there are multiple ways of deriving the same category, the chart will only contain a single edge of that
category. For example, when parsing the input kim saw snow in oslo, there are multiple ways of analyzing
the VP saw snow in oslo. The specific context-free grammar we are assuming is provided at the top of
‘chart.lsp’; it closely resembles the simple grammar we have assumed in lectures. Inspect the grammar
and, using pencil and paper, convince yourself that there multiple interpretations of this example. How
many different parse trees are there for kim saw snow in oslo, given this grammar? Draw all valid trees
and comment, in a sentence or two, on where exactly the ambiguities are located.

(b) Read through our file ‘chart.lsp’ and its wealth of comments; make sure you understand the various
abstract data types used, and look especially closely at the functions parse() and fundamental-rule().
Make sure you could explain the high-level structure of the parser to a friend, for example in an exam-like
situation. Our Lisp code aligns quite closely with the more abstract presentation of the generalized chart
parser used in our lecture slide copies. How exactly do we implement the notion of ‘backpointers’, i.e. the
relation between an edge and its sequence of immediate daughters? Once you see the full picture, take a
closer look at the function pack-edge() and understand what it means for one edge to be packed into a
‘host’ edge. Invoke the parser on an ambiguous input, for example:

? (parse ’(kim saw snow in oslo))

Use the appropriate accessor function on the edge structure to retrieve the VP daughter from the parsing
result and inspect that edge closely. Note that the global variable *chart* provides the complete parse
chart once parsing has finished. Hence, another way of looking for the VP-level ambiguity in the parse
chart would be to inspect the chart cell corresponding to the ambiguous sub-string. Use the function
chart-cell() to find the same VP edge, i.e. the second daughter to the top-level parse() result for the
current example.

(c) To unpack from the forest, loosely speaking, means to ‘explode’ an edge containing packed ambiguity
into complete parse trees. In principle, there can be multiple packings deeply nested inside of daugther
edges. For example an edge e with two daughers, x and y, may unpack into a total of six trees: if, in
turn, x unpacks into three distinct trees, and y into two, then the sum of unpacked trees for e will be
the cross-product of the two sets of daughter edges. To prepare for unpacking of edges, write a recursive



function cross-product() so that it takes as its single argument a list of lists (conceptually, a set of sets),
and returns a set of all the tuples (again represented as lists), each of which contains exactly one element
from each of the input sets; e.g.

? (cross-product ’((1 2 3) (A B) (X Y)))

→ ((1 A X) (1 A Y) (1 B X) (1 B Y)

(2 A X) (2 A Y) (2 B X) (2 B Y)

(3 A X) (3 A Y) (3 B X) (3 B Y))

Because the number of sets to be multiplied out will depend on the number of daughters in each grammar
rule, our definition of cross-product()must be able to process an arbitrary number of sets. What should
be the base case, e.g. the return value for a call like:

? (cross-product ’((1 2 3)))

Implement this function towards the end of the file ‘chart.lsp’, where we have already provided the
skeleton of the function, including a generous supply of helpful comments. Consider replacing the place-
holder symbols ‘???’ with actual code. There are many different ways of implementing this function, of
course, so feel free to ignore our skeleton and write your function from scratch, if you find that easier. Be
sure to test your function on sets of sets of varied sizes.

(d) Now look at the definition of unpack-edge() in ‘chart.lsp’. Given an edge, unpack-edge() returns a
list of one or more trees corresponding to that edge once all ‘packed’ ambiguities have been multiplied
out, for example:

? (unpack-edge (first (parse ’(kim saw snow in oslo))))

→ ((S (NP kim) (VP (VP (V saw) (NP snow)) (PP (P in) (NP oslo))))

(S (NP kim) (VP (V saw) (NP (NP snow) (PP (P in) (NP oslo))))))

The implementation of unpack-edge() is a little tricky, since it has to look at both the daughters and
alternates components of an edge structure. To write this function, you should have a good understanding
of (a) how the edge structure works and (b) the techniques used for ambiguity packing in our chart parser.
If in doubt, consult Chapter 14 of Jurafsky & Martin (2008) and the slides copies from the past two
weeks. The general idea is straightforward, though: for edges without daughters, unpack-edge() returns
a singleton list containing just the category of that edge (i.e. an ‘atomic’ tree or leaf node). For all
other edges, unpack-edge() recurses over all daughters, cross multiplies all variations in each daughter
position with all the other daughters, and builds as many trees as there are combinations; in addition
to unfolding the current edge itself, unpack-edge() also needs to recurse over all equivalent edges (for
which the current edge acts as a host) and combine the results of unpacking those with the list of trees
corresponding to the host edge itself.

As for testing, again go with inputs of increasing complexity. You may choose to temporarily relax the
selection of what is returned from the parse() function, so as to be able to parse just noun or verb
phrases; if you were looking for an edge with a non-empty alternates value, consider parsing just saw snow

in oslo—or use chart-cell() with appropriate indices after parsing a full sentence, as we did in part (b)
above.

3 Theory: Probabilistic Context-Free Grammars

Consider the following parse tree for the sentence Still, Time’s move is being received well. (taken from
Section 23 of the Penn Treebank, PTB):



S

ADVP

RB

Still

,

,

NP

NP

NNP

Time

POS

QUOTE

s

NN

move

VP

AUX

is

VP

AUX

being

VP

VBN

received

ADVP

RB

well

.

.

(a) Assuming this PTB tree was our complete training corpus, in one sentence sketch the procedure to extract
context-free grammar (CFG) rules from the treebank. In another sentence, show how PCFG rule proba-
bilities are estimated. When applying these procedures to the example above, which of the following rules
are motivated by the treebank? Likewise, for those rules legitimately corresponding to our baby treebank,
decide whether their probability estimates are correct (still assuming a training corpus comprised of only
the above PTB tree), or determine the correct values where not.

CFG Rule PCFG Probability

S → RB , NP NN AUX VP . 1.0
NP → NP NN 0.5

NP → NNP POS 0.5
VP → AUX VBN ADVP 0.5

VP → AUX AUX VBN ADVP 0.3
VP → AUX VP 0.5

4 Quasi-Destructive Graph Unification

For this part of the exercise, we provide three additional files: ‘dag.lsp’, ‘types.lsp’, and ‘GLBS’. We will
make modifications to ‘dag.lsp’; the file ‘types.lsp’ provides the definitions of a simple type hierarchy,
organized as structures of type type (no pun intended). We already provide code in ‘dag.lsp’ to read in
the type hierarchy; the function lookup-type() can be used to retrieve an entry from the type hierarchy,
taking the type name (a Lisp symbol) as its sole argument. We further provide a function glb() to
compute the greatest lower bound of two types (specified by their names); for example:

? (glb ’noun-word ’3sing-word)

→ NOUN-WORD-3SING

The definitions in ‘types.lsp’ use structure components parents and daughters to spell out super- and
sub-type relations. Find the entry for the type pos ; recursively follow its sub-types and draw the complete
type hierarchy below pos. Are there any instances of multiple inheritance in this sub-hierarchy? If so
which types are involved.

The primary purpose of our type hierarchy, for the present problem set, is to provide the hierarchical rela-
tionships among feature structure types. However, each type entry in our hierarchy also has a component
dag, which holds an example feature structure of that type. For testing purposes, we will use these feature
structures as arguments to our unification and copy procedures.

(a) For the representation of typed feature structures, we will rely on two abstract data types—called dag and
arc—to encode a node in a dag structure and a feature – value pair in a dag, respectively. In ‘dag.lsp’,
consider the structure definition dag, with components forward, type, arcs, and copy, and also take a look
at arc, with components feature and value. While the first three components of dag should feel familiar
from your reading of Wroblewski (1987), we will have more to say on the copy slot later in this exercise.



(b) Next, implement the function deref(), which recursively follows non-nil forward pointers until it reaches
a dag that is not forwarded. Throughout all dag-manipulating functions, we need to make sure that dags
are always dereferenced (or ‘forward-resolved’) at each level, so as to avoid looking at the type or arcs

slots of a dag that has a non-nil forward value.

Note that we can look up the dags associated with entries in the type hierarchy and print them; for
example:

? (pprint (type-dag (lookup-type ’head-initial)))

The feature structure associated with the type head-initial is especially interesting because it contains a
so-called re-entrancy: the values of the two paths 〈head〉 and 〈args first head〉 are token-identical, i.e.
both paths ‘point’ to the same dag object. Find the corresponding parts of the print-out produced by the
above call: how does Lisp indicate re-entrancy of sub-structures?

To make visual inspection of feature structures—complex, recursive objects—a little easier, we provide a
custom printer for dag objects: try using print-dag() instead of pprint() on our example dag. Compare
the two outputs carefully.

(c) Go through the definition of unify1(), the main function of the unifier and fill in missing parts (incidated
by ‘???’ once again): unify1() can count on the top-level unify() function to establish a catch()

context for non-local exits (as unification failure is detected at some arbitrarily deep recursion level). In
our typed feature structure universe, we will use nil to denote the inconsistent ‘bottom’ type of the
type lattice, i.e. indicating failure of unification. In essence, unify1() implements a typed variant of the
destructive unification algorithm proposed by Wroblewski (1987): after dereferencing both input dags,
it first determines the unification (aka greatest lower bound) of the types on the two structures. The
computation of the greatest lower bound for two types is available through the function glb() (which we
supply; maybe experiment with the glb() interactively: call it with two symbols naming types from the
hierary as its arguments). Only if a greatest lower bound exists, can unification proceed; unify1() then
puts the two input dags into one equivalence class, records the (potentially new) type on the result, and
then combines all attributes from both dags.

(d) Since our unifier is destructive (i.e. permanently changes both its input dags), it is essential to make sure
not to modify any of the structures that are part of the grammar. To avoid doing damage to the grammar,
we will typically create a copy before invoking a destructive operation (like unify()) on it. Copying, in
a nutshell, walks through the dag, creating copies of each node and all arcs, such that the resulting dag
is structurally equivalent to the original but shares no elements with it (i.e. no two dag nodes or arcs in
the original and copy are token-identical).

Our dag representation of typed feature structures builds on token-identity (aka eq()-ness) of nodes to
encode coreference (aka feature structure reentrancy): where two paths in a feature structure refer to the
same value, the underlying dag structure has one node occurring as the value in multiple feature – value
pairs. A full traversal of the structure will thus lead to multiple visits to that node. Re-visit the head-initial

example we inspected earlier; make sure to understand what it means for a feature structure traversal to
‘visit’ re-entrant nodes multiple times. Which of the nodes in this example will be visited more than once
during unification, and how many times exactly?

Next study the result of the following code fragment (or consider first writing a function dag-arc-value()

which, given a dag and a feature, returns the value of that feature in the dag—dag-arc-value() would
allow elimination of the frequent loop()s below) to be sure you understand how reentrancy works in our
feature structures:

? (let* ((dag (type-dag (lookup-type ’head-initial)))

(head (loop

for arc in (dag-arcs dag)

when (eq (arc-feature arc) ’head) return (arc-value arc)))

(args (loop

for arc in (dag-arcs dag)

when (eq (arc-feature arc) ’args) return (arc-value arc)))

(first (loop

for arc in (dag-arcs args)



when (eq (arc-feature arc) ’first) return (arc-value arc))))

(eq head (loop

for arc in (dag-arcs first)

when (eq (arc-feature arc) ’head) return (arc-value arc))))

What is the return value of this code fragment?

Keeping our representation of reentrancy in mind, the identity of nodes that appear under more than one
path in a structure must be preserved when creating copies of dags; the function copy1() will use the
copy slot of the dag structure to allow each node of the original dag to (temporarily) keep a reference to
its corresponding copy. In other words, copy1() checks the copy slot for each node that it visits before
creating a new dag: where the copy slot is empty, a fresh dag copy is created and recorded in the copy slot
of the input dag; whenever copy1() finds itself visiting the same input node twice (indicating reentrancy),
the copy made earlier will be available in the copy slot and can be reused. Reusing the same (copied) dag
multiple times in the emerging copy of the input structure has the intended effect of preversing reentrancy.

Go through occurrences of ‘???’ in the definition of copy1() in ‘dag.lsp’ and fill in the missing parts.

(e) Next, we need a function to reset the copy slots of all dag nodes in a feature structure to empty values (i.e.
nil), which we will use to undo the temporary effects of copy1() on the input dag after the completion
of each copy operation (otherwise later copies might end up re-using dags that form part of an earlier
copy). Implement the body of restore() in ‘dag.lsp’. Finally, to complete the copy procedure, provide
the definition of the top-level entry point copy(), making sure that (a) the input dag is restored after the
auxiliary function copy1() has been called and (b) that the dag copy is returned in the end.

Note: You may have noticed that, unlike in earlier exercises, we have hardly encouraged you to do testing
of individual functionality so far. Without the ability to copy both input structures prior to unification,
unify() would destructively modify the internal dags of the grammar and what worked once may not
work the next time. However, damage to the internals of the type hierarchy may still result while we
have not confirmed proper operation of the copy() procedure. While debugging the copier and unifier, be
sure to reload the ‘types.lsp’ file frequently, i.e. either re-evaluate the assignment of the global *types*
variable or simply re-load the entire file ‘dags.lsp’.

(f) As indicated earlier, the value of the global variable *types* provides the hierarchy of types plus, for each
type, a feature structure of that type (in the dag component of the type structure). To test the unifier, use
the function lookup-type() (see above) to retrieve pairs of types, extract their dag values, copy them,
and then invoke the unifier on them, e.g.

? (unify (copy (type-dag (lookup-type ’noun-word)))

(copy (type-dag (lookup-type ’3sing-word))))

Remember to use print-dag() to obtain a complete, yet compact visual rendering of dag objects.

(g) Finally, to get a somewhat more substantive test, complete the body of test() in ‘dag.lsp’. The purpose
of the test() function is to iterate over all types of the grammar and attempt to unify them against all
types of the grammar (including themselves). Whenver the unification succeeds, test() is to print a line
like the following

‘POSTMODIFIER’ & ‘PREMODIFIER’ = ‘ADV’

which we take to indicate that postmodifier and premodifier successfully unify to adv (consult your notes
on the type hierarchy to see why). A complete list of successful unifications for this grammar is in the
file ‘GLBS’; once you have verified the implementation of your test() function and feel content with the
results, compare the print-out you get to our file.

5 Submitting Your Results

Please submit your results in email to Stephan (‘oe@ifi.uio.no’) and Lars (‘larsbun@ifi.uio.no’)
before 12:00 noon on Thursday, November 20. Please provide all files that you created as part of this
exercise, including all code and answers to the questions above. Note that it is still good practice to
generously document your code.


