
S

NP

Det

The

N

dog

VP

V

barked



























LTOP h1

INDEX e2

RELS

〈







prpstn m rel

LBL h1

MARG h3





















def q rel

LBL h4

ARG0 x5

RSTR h6

BODY h7





















“dog n rel”

LBL h8

ARG0 x5

















“bark v rel”

LBL h9

ARG0 e2

ARG1 x5











〉

HCONS 〈h3 =q h9, h6 =q h8〉



























Algorithms for AI and NLP
(INF4820 — Parsing)
S −→ NP VP; NP −→ Det N; VP −→ V NP

Stephan Oepen and Jan Tore Lønning

Universitetet i Oslo

{ oe | jtl }@ifi.uio.no

Mildly Mathematically: Context-Free Grammars

• Formally, a context-free grammar (CFG) is a quadruple: 〈C, Σ, P, S〉

• C is the set of categories (aka non-terminals), e.g. {S, NP, VP, V};

• Σ is the vocabulary (aka terminals), e.g. {Kim, snow, saw, in};

• P is a set of category rewrite rules (aka productions), e.g.'

&

$

%

S→ NP VP
VP→ V NP
NP→ Kim
NP→ snow
V→ saw

• S ∈ C is the start symbol, a filter on complete (‘sentential’) results;

• for each rule ‘α→ β1, β2, ..., βn’ ∈ P : α ∈ C and βi ∈ C ∪ Σ; 1 ≤ i ≤ n.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (2)

Parsing: Recognizing the Language of a Grammar

'

&

$

%

S→ NP VP
VP→ V | V NP | VP PP
NP→ NP PP
PP→ P NP
NP→ Kim | snow | Oslo
V→ saw
P→ in

All Complete Derivations
• are rooted in the start symbol S;

• label internal nodes with cate-
gories ∈ C, leafs with words ∈ Σ;

• instantiate a grammar rule ∈ P at
each local subtree of depth one.

S

NP

Kim

VP

VP

V

saw

NP

snow

PP

P

in

NP

Oslo

S

NP

Kim

VP

V

saw

NP

NP

snow

PP

P

in

NP

oslo

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (3)

A Simple-Minded Parsing Algorithm

Control Structure

• top-down: given a parsing goal α, use all grammar rules that rewrite α;

• successively instantiate (extend) the right-hand sides of each rule;

• for each βi in the RHS of each rule, recursively attempt to parse βi;

• termination: when α is a prefix of the input string, parsing succeeds.

(Intermediate) Results

• Each result records a (partial) tree and remaining input to be parsed;

• complete results consume the full input string and are rooted in S;

• whenever a RHS is fully instantiated, a new tree is built and returned;

• all results at each level are combined and successively accumulated.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (4)

A Recursive Descent Parser
'

&

$

%

(defun parse (input goal)

(if (equal (first input) goal)

(list (make-state :tree (first input) :input (rest input)))

(loop

for rule in (rules-rewriting goal)

append (instantiate (rule-lhs rule) nil (rule-rhs rule) input))))

'

&

$

%

(defun instantiate (lhs analyzed unanalyzed input)

(if (null unanalyzed)

(list (make-state :tree (make-tree :root lhs :daughters analyzed)

:input input))

(loop

for parse in (parse input (first unanalyzed))

append (instantiate

lhs

(append analyzed (list (state-tree parse)))

(rest unanalyzed)

(state-input parse)))))

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (5)

A Closer Look at the Calling Sequence
'

&

$

%

SSP(18): (parse ’(kim adored snow) ’s)

parse(): input: (KIM ADORED SNOW); goal: S

parse(): input: (KIM ADORED SNOW); goal: NP

parse(): input: (KIM ADORED SNOW); goal: KIM

parse(): input: (KIM ADORED SNOW); goal: SANDY

parse(): input: (KIM ADORED SNOW); goal: SNOW

parse(): input: (ADORED SNOW); goal: VP

parse(): input: (ADORED SNOW); goal: V

parse(): input: (ADORED SNOW); goal: LAUGHED

parse(): input: (ADORED SNOW); goal: ADORED

parse(): input: (ADORED SNOW); goal: V

parse(): input: (ADORED SNOW); goal: LAUGHED

parse(): input: (ADORED SNOW); goal: ADORED

parse(): input: (SNOW); goal: NP

...

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (6)

Quantifying the Complexity of the Parsing Task

1 2 3 4 5 6 7 8

Number of Prepositional Phrases (n)

0

250000

500000

750000

1000000

1250000

1500000

Recursive Function Calls

• • • • • •
•

•

•

Kim adores snow (in Oslo)n

n trees calls

0 1 46

1 2 170

2 5 593

3 14 2,093

4 42 7,539

5 132 27,627

6 429 102,570

7 1430 384,566

8 4862 1,452,776
...

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (7)

Memoization: Remember Earlier Results

Dynamic Programming

• The function call (parse (adored snow) V) executes two times;

• memoization — record parse() results for each set of arguments;

→ requires abstract data type, efficient indexing on input and goal.

'

&

$

%
1 2 3 4 5 6 7 8

Number of Prepositional Phrases (n)

0

25000

50000

75000

100000

125000

150000

175000

200000

• • • • •
•

•

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄

⋄

• original algorithm
⋄ memoized variant

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (8)

Top-Down vs. Bottom-Up Parsing

Top-Down (Goal-Oriented)

• Left recursion (e.g. a rule like ‘VP→ VP PP’) causes infinite recursion;

• grammar conversion techniques (eliminating left recursion) exist, but will
typically be undesirable for natural language processing applications;

→ assume bottom-up as basic search strategy for remainder of the course.

Bottom-Up (Data-Oriented)

• unary (left-recursive) rules (e.g. ‘NP→ NP’) would still be problematic;

• lack of parsing goal: compute all possible derivations for, say, the input
adores snow ; however, it is ultimately rejected since it is not sentential;

• availability of partial analyses desirable for, at least, some applications.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (9)

A Bottom-Up Variant (1 of 2)

• Work upwards from string; successively combine words or phrases into larger phrases;

• use all grammar rules that have the (currently) next input word as β1 in their RHS;

• recursively attempt to instantiate the remaining part of each rule RHS (βi; 2 ≤ i ≤ n);

• when a rule α→ β+
i has been completely instantiated, attempt all rules starting in α;

• for each (remaining) input (suffix), derive all trees that span a prefix or all of the input.

'

&

$

%

(defun parse (input)

(when input

(loop

for rule in (rules-starting-in (first input))

append (instantiate (rule-lhs rule)

(list (first (rule-rhs rule)))

(rest (rule-rhs rule))

(rest input)))))

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (10)

A Bottom-Up Variant (2 of 2)'

&

$

%

(defun instantiate (lhs analyzed unanalyzed input)

(if (null unanalyzed)

(let ((tree (make-tree :root lhs :daughters analyzed)))

(cons (make-state :tree tree :input input)

(loop

for rule in (rules-starting-in lhs)

append

(instantiate (rule-lhs rule)

(list tree)

(rest (rule-rhs rule))

input))))

(loop

for state in (parse input)

when (equal (tree-root (state-tree state))

(first unanalyzed))

append (instantiate lhs

(append analyzed (list (state-tree state)))

(rest unanalyzed)

(state-input state)))))

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (11)

Chart Parsing — Specialized Dynamic Programming

Basic Notions

• Use chart to record partial analyses, indexing them by string positions;

• count inter-word vertices; CKY: chart row is start, column end vertex;

• treat multiple ways of deriving the same category for some substring as
equivalent ; pursue only once when combining with other constituents.

Key Benefits

• Dynamic programming (memoization): avoid recomputation of results;

• efficient indexing of constituents: no search by start or end positions;

• compute parse forest with exponential ‘extension’ in polynomial time.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (12)

Bounding Ambiguity — The Parse Chart

• For many substrings, more than one way of deriving the same category;

• NPs: 1 | 2 | 3 | 6 | 7 | 9 ; PPs: 4 | 5 | 8 ; 9 ≡ 1 + 8 | 6 + 5 ;

• parse forest — a single item represents multiple trees [Billot & Lang, 89].

'

&

$

%2 3 4 5 6 7

boys with hats from France

1 2 3

4 5

6 7

8

9

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (13)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do
chart [i,i+1]← {α |α→ input i ∈ P};

for (1 ≤ l < |input |) do
for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do
if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then
chart [i,i+l+1]← chart [i,i+l+1] ∪ {α};

'

&

$

%

[0,2]← [0,1] + [1,2]
· · ·

[0,5]← [0,1] + [1,5]
[0,5]← [0,2] + [2,5]
[0,5]← [0,3] + [3,5]
[0,5]← [0,4] + [4,5]

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (14)

Limitations of the CKY Algorithm

Built-In Assumptions

• Chomsky Normal Form grammars: α→ β1β2 or α→ γ (βi ∈ C, γ ∈ Σ);

• breadth-first (aka exhaustive): always compute all values for each cell;

• rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

• Liberate order of computation: no assumptions about earlier results;

• active edges encode partial rule instantiations, ‘waiting’ for additional
(adjacent and passive) constituents to complete: [1, 2, VP→ V •NP];

• parser can fill in chart cells in any order and guarantee completeness.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (15)

Generalized Chart Parsing

• The parse chart is a two-dimensional matrix of edges (aka chart items);

• an edge is a (possibly partial) rule instantiation over a substring of input;

• the chart indexes edges by start and end string position (aka vertices);

• dot in rule RHS indicates degree of completion: α→ β1...βi−1 • βi...βn

• active edges (aka incomplete items) — partial RHS: [1, 2, VP→ V •NP];

• passive edges (aka complete items) — full RHS: [1, 3, VP→ V NP•];

'

&

$

%

The Fundamental Rule

[i, j, α→ β1...βi−1 • βi...βn] + [j, k, βi → γ+•]

7→ [i, k, α→ β1...βi • βi+1...βn]

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (16)

An Example of a (Near-)Complete Chart

1 2 3 4 5

0
NP→NP •PP
S→NP •VP
NP→ kim •

S→NP VP •

1 VP→V •NP
V→adored •

VP→VP •PP
VP→V NP •

VP→VP •PP
VP→VP PP •
VP→V PP •

2 NP→NP •PP
NP→ snow •

NP→NP •PP
NP→NP PP •

3 PP→P •NP
P→ in • PP→P NP •

4 NP→NP •PP
NP→oslo •

�
�

�
�0 Kim 1 adored 2 snow 3 in 4 Oslo 5

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (17)

(Even) More Active Edges

0 1 2 3

0
S→ •NP VP

NP→ •NP PP
NP→ • kim

S→NP •VP
NP→NP •PP

NP→ kim •
S→NP VP •

1
VP→ •VP PP
VP→ •V NP
V→ • adored

VP→V •NP
V→adored •

VP→VP •PP
VP→V NP •

2 NP→ •NP PP
NP→ • snow

NP→NP •PP
NP→ snow •

3

• Include all grammar rules as epsilon edges in each chart [i,i] cell.

• after initialization, apply fundamental rule until fixpoint is reached.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (18)

Our ToDo List: Keeping Track of Remaining Work

The Abstract Goal

• Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naı̈ve Strategy

• Keep iterating through the complete chart, combining all possible pairs,
until no additional edges can be derived (i.e. the fixpoint is reached);

• frequent attempts to combine pairs multiple times: deriving ‘duplicates’.

An Agenda-Driven Strategy

• Combine each pair exactly once, viz. when both elements are available;

• maintain agenda of new edges, yet to be checked against chart edges;

• new edges go into agenda first, add to chart upon retrieval from agenda.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (19)

Backpointers: Recording the Derivation History

0 1 2 3

0
2: S→ •NP VP

1: NP→ •NP PP
0: NP→ • kim

10: S→8 •VP
9: NP→8 •PP
8: NP→ kim •

17: S→8 15 •

1
5: VP→ •VP PP
4: VP→ •V NP
3: V→ • adored

12: VP→11 •NP
11: V→adored •

16: VP→15 •PP
15: VP→11 13 •

2 7: NP→ •NP PP
6: NP→ • snow

14: NP→13 •PP
13: NP→ snow •

3

• Use edges to record derivation trees: backpointers to daughters;

• a single edge can represent multiple derivations: backpointer sets.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (20)

Ambiguity Packing in the Chart

General Idea

• Maintain only one edge for each α from i to j (the ‘representative’);

• record alternate sequences of daughters for α in the representative.

Implementation

• Group passive edges into equivalence classes by identity of α, i, and j;

• search chart for existing equivalent edge (h, say) for each new edge e;

• when h (the ‘host’ edge) exists, pack e into h to record equivalence;

• e not added to the chart, no derivations with or further processing of e;

→ unpacking multiply out all alternative daughters for all result edges.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (21)

Chart Elements: The Edge Structure
�

�

�

�
#[id: (i-j) α --> edge1 ... edgei . βi+1 ... βn {alternate1 ... alternaten }

∗]

Components of the edge Structure

• id unique edge identifier (automatically assigned my make-edge());

• i and j starting and ending string index (chart vertices) for this edge;

• α category of this edge (from the set C of non-terminal symbols);

• edge1 ... edgei (list of) daughter edges (for β1 ... βi) instantiated so far;

• βi+1 ... βn (list of) remaining categories in rule RHS to be instantiated;

• alternate1 ... alternaten alternative derivation(s) for α from i to j;

→ implemented using defstruct() (plus suitable pretty printing routine).

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (22)

Background: Trees as Bracketed Sequences

• Trees can be encoded as sequences (dominance plus precedence):

'

&

$

%

(S (NP kim)

(VP (V adored)

(NP snow)))

'

&

$

%

S

NP

kim

VP

V

adores

NP

snow

• the first() element (at each level) represents the tree root (or mother);

• all other elements (i.e. the rest()) correspond to immediate daughters.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (23)

Ambiguity Resolution Remains a (Major) Challenge

The Problem

• With broad-coverage grammars, even moderately complex sentences typ-
ically have multiple analyses (tens or hundreds, rarely thousands);

• unlike in grammar writing, exhaustive parsing is useless for applications;

• identifying the ‘right’ (intended) analysis is an ‘AI-complete’ problem;

• inclusion of (non-grammatical) sortal constraints is generally undesirable.

Typical Approaches

• Design and use statistical models to select among competing analyses;

• for string S, some analyses Ti are more or less likely: maximize P (Ti|S);

→ Probabilistic Context Free Grammar (PCFG) is a CFG plus probabilities.

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (24)

Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (25)

Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (25)

Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

But it must be recognized that the notion ‘probability’ of a
sentence is an entirely useless one, under any known

interpretation of this term. (Noam Chomsky, 1969)

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (25)

Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

But it must be recognized that the notion ‘probability’ of a
sentence is an entirely useless one, under any known

interpretation of this term. (Noam Chomsky, 1969)

Every time I fire a linguist,
system performance improves. (Fredrick Jelinek, 1980s)

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (25)

A (Simplified) PCFG Estimation Example

S

NP

Kim

VP

VP

V

shot

NP

elephants

PP

P

in

NP

pajamas

S

NP

Kim

VP

V

loves

NP

NP

cake

PP

P

with

NP

chocolate

S

NP

Kim

VP

VP

V

arrived

PP

P

in

NP

Oslo

'

&

$

%

P(RHS|LHS) CFG Rule
S → NP VP

VP → VP PP
VP → V NP
PP → P NP
NP → NP PP
VP → V

• Estimate rule probability
from observed distribution;

→ conditional probabilities:

P(RHS|LHS) =
C(LHS, RHS)

C(LHS)

inf4820 — -oct- (oe@ifi.uio.no)

Natural Language Understanding (26)

