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Quantifying the Complexity of the Parsing Task
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Chart Parsing — Specialized Dynamic Programming

Basic Notions

• Use chart to record partial analyses, indexing them by string positions;

• count inter-word vertices; CKY: chart row is start, column end vertex;

• treat multiple ways of deriving the same category for some substring as
equivalent ; pursue only once when combining with other constituents.

Key Benefits

• Dynamic programming (memoization): avoid recomputation of results;

• efficient indexing of constituents: no search by start or end positions;

• compute parse forest with exponential ‘extension’ in polynomial time.
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Bounding Ambiguity — The Parse Chart

• For many substrings, more than one way of deriving the same category;

• NPs: 1 | 2 | 3 | 6 | 7 | 9 ; PPs: 4 | 5 | 8 ; 9 ≡ 1 + 8 | 6 + 5 ;

• parse forest — a single item represents multiple trees [Billot & Lang, 89].
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boys with hats from France

1 2 3

4 5

6 7

8

9
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The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do
chart [i,i+1]← {α |α→ input i ∈ P};

for (1 ≤ l < |input |) do
for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do
if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then
chart [i,i+l+1]← chart [i,i+l+1] ∪ {α};

'

&

$

%

[0,2]← [0,1] + [1,2]
· · ·

[0,5]← [0,1] + [1,5]
[0,5]← [0,2] + [2,5]
[0,5]← [0,3] + [3,5]
[0,5]← [0,4] + [4,5]

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP
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Generalized Chart Parsing

• The parse chart is a two-dimensional matrix of edges (aka chart items);

• an edge is a (possibly partial) rule instantiation over a substring of input;

• the chart indexes edges by start and end string position (aka vertices);

• dot in rule RHS indicates degree of completion: α→ β1...βi−1 • βi...βn

• active edges (aka incomplete items) — partial RHS: [1, 2, VP→ V •NP];

• passive edges (aka complete items) — full RHS: [1, 3, VP→ V NP•];

'

&

$

%

The Fundamental Rule

[i, j, α→ β1...βi−1 • βi...βn] + [j, k, βi → γ+•]

7→ [i, k, α→ β1...βi • βi+1...βn]
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Backpointers: Recording the Derivation History

0 1 2 3

0
2: S→ •NP VP

1: NP→ •NP PP
0: NP→ • kim

10: S→8 •VP
9: NP→8 •PP
8: NP→ kim •

17: S→8 15 •

1
5: VP→ •VP PP
4: VP→ •V NP
3: V→ • adored

12: VP→11 •NP
11: V→adored •

16: VP→15 •PP
15: VP→11 13 •

2 7: NP→ •NP PP
6: NP→ • snow

14: NP→13 •PP
13: NP→ snow •

3

• Use edges to record derivation trees: backpointers to daughters;

• a single edge can represent multiple derivations: backpointer sets.
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Ambiguity Packing in the Chart

General Idea

• Maintain only one edge for each α from i to j (the ‘representative’);

• record alternate sequences of daughters for α in the representative.

Implementation

• Group passive edges into equivalence classes by identity of α, i, and j;

• search chart for existing equivalent edge (h, say) for each new edge e;

• when h (the ‘host’ edge) exists, pack e into h to record equivalence;

• e not added to the chart, no derivations with or further processing of e;

→ unpacking multiply out all alternative daughters for all result edges.
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Background: Trees as Bracketed Sequences

• Trees can be encoded as sequences (dominance plus precedence):

'

&

$

%

(S (NP kim)

(VP (V adored)

(NP snow)))

'

&

$

%

S

NP

kim

VP

V

adores

NP

snow

• the first() element (at each level) represents the tree root (or mother);

• all other elements (i.e. the rest()) correspond to immediate daughters.
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Ambiguity Resolution Remains a (Major) Challenge

The Problem

• With broad-coverage grammars, even moderately complex sentences typ-
ically have multiple analyses (tens or hundreds, rarely thousands);

• unlike in grammar writing, exhaustive parsing is useless for applications;

• identifying the ‘right’ (intended) analysis is an ‘AI-complete’ problem;

• inclusion of (non-grammatical) sortal constraints is generally undesirable.

Typical Approaches

• Design and use statistical models to select among competing analyses;

• for string S, some analyses Ti are more or less likely: maximize P (Ti|S);

→ Probabilistic Context Free Grammar (PCFG) is a CFG plus probabilities.
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Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)
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Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)
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Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

But it must be recognized that the notion ‘probability’ of a
sentence is an entirely useless one, under any known

interpretation of this term. (Noam Chomsky, 1969)
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Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

But it must be recognized that the notion ‘probability’ of a
sentence is an entirely useless one, under any known

interpretation of this term. (Noam Chomsky, 1969)

Every time I fire a linguist,
system performance improves. (Fredrick Jelinek, 1980s)
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Probabilistic Context-Free Grammars
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A (Simplified) PCFG Estimation Example
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P(RHS|LHS) CFG Rule
S → NP VP

VP → VP PP
VP → V NP
PP → P NP
NP → NP PP
VP → V

• Estimate rule probability
from observed distribution;

→ conditional probabilities:

P(RHS|LHS) =
C(LHS, RHS)

C(LHS)
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Formally: Probabilistic Context-Free Grammars

• Formally, a context-free grammar (CFG) is a quadruple: 〈C, Σ, P, S〉

...

• P is a set of category rewrite rules (aka productions), each with a
conditional probability P(RHS|LHS), e.g.'

&

$

%

...

NP→ Kim [0.6]
NP→ snow [0.4]

...

• for each rule ‘α→ β1, β2, ..., βn’ ∈ P : α ∈ C and βi ∈ C ∪ Σ; 1 ≤ i ≤ n;

...

• for each α ∈ C, the probabilities of all rules R ‘α→ ...’ must sum to 1.
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Limitations of Context-Free Grammar

Agreement and Valency (For Example)

That dog barks.
∗That dogs barks.
∗Those dogs barks.

The dog chased a cat.
∗The dog barks a cat.
∗The dog chased.

∗The dog chased a cat my neighbours.

The cat was chased by a dog.
∗The cat was chased of a dog.

...
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Unification-Based Grammar: Structured Categories

• All (constituent) categories in the grammar are typed feature structures;

• feature structures are recursive, record-like objects: attribute – value sets;

• typing very similar to OO programming: a multipe-inheritance hierarchy;

• specific TFS configurations may correspond to ‘traditional’ categories;

• labels like ‘S’ or ‘NP’ are mere abbreviations, not elements of the theory.
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The Type Hierarchy: Fundamentals

• Types ‘represent’ groups of entities with similar properties (‘classes’);

• types ordered by specificity: subtypes inherit properties of (all) parents;

• type hierarchy determines which types are compatible (and which not).

*top*

*string* feat-struc*list*

expression pos

noun verb det

*ne-list* *null*

phraseword
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Typed Feature Structure Subsumption

• Typed feature structures can be partially ordered by information content;

• a more general structure is said to subsume a more specific one;

•
*top*







 is the most general feature structure (while ⊥ is inconsistent);

• ⊑ (‘square subset or equal’) conventionally used to depict subsumption.

Feature structure F subsumes feature structure G (F ⊑ G) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of p in F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.
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Feature Structure Subsumption: Examples

TFS1:
a













FOO x
BAR x













TFS2:
a













FOO x
BAR y













TFS3:

b





















FOO y
BAR x
BAZ x





















TFS4:
a













FOO 1 x
BAR 1













Hierarchy

a FOO

BAR
x

b BAZ y

Feature structure F subsumes feature structure G (F ⊑ G) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of p in F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.
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Typed Feature Structure Unification

• Decide whether two typed feature structures are mutually compatible;

• determine combination of two TFSs to give the most general feature
structure which retains all information which they individually contain;

• if there is no such feature structure, unification fails (depicted as ⊥);

• unification monotonically combines information from both ‘input’ TFSs;

• relation to subsumption the unification of two structures F and G is
the most general TFS which is subsumed by both F and G (if it exists).

• ⊓ (‘square set intersection’) conventionally used to depict unification.
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Typed Feature Structure Unification: Examples

TFS1:
a
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TFS1 ⊓ TFS2 ≡ TFS2 TFS1 ⊓ TFS3 ≡ TFS3 TFS3 ⊓ TFS4 ≡
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