
S

NP

Det

The

N

dog

VP

V

barked

LTOP h1

INDEX e2

RELS

〈

prpstn m rel

LBL h1

MARG h3

def q rel

LBL h4

ARG0 x5

RSTR h6

BODY h7

“dog n rel”

LBL h8

ARG0 x5

“bark v rel”

LBL h9

ARG0 e2

ARG1 x5

〉

HCONS 〈h3 =q h9, h6 =q h8〉

Algorithms for AI and NLP
(INF4820 — PCFGs)

P(S−→NP VP) = 1.0; P(NP−→Det N) = 0.6

Stephan Oepen and Jan Tore Lønning

Universitetet i Oslo

{ oe | jtl }@ifi.uio.no

Quantifying the Complexity of the Parsing Task

1 2 3 4 5 6 7 8

Number of Prepositional Phrases (n)

0

250000

500000

750000

1000000

1250000

1500000

Recursive Function Calls

• • • • • •
•

•

•

Kim adores snow (in Oslo)n

n trees calls

0 1 46

1 2 170

2 5 593

3 14 2,093

4 42 7,539

5 132 27,627

6 429 102,570

7 1430 384,566

8 4862 1,452,776
...

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (2)

Chart Parsing — Specialized Dynamic Programming

Basic Notions

• Use chart to record partial analyses, indexing them by string positions;

• count inter-word vertices; CKY: chart row is start, column end vertex;

• treat multiple ways of deriving the same category for some substring as
equivalent ; pursue only once when combining with other constituents.

Key Benefits

• Dynamic programming (memoization): avoid recomputation of results;

• efficient indexing of constituents: no search by start or end positions;

• compute parse forest with exponential ‘extension’ in polynomial time.

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (3)

Bounding Ambiguity — The Parse Chart

• For many substrings, more than one way of deriving the same category;

• NPs: 1 | 2 | 3 | 6 | 7 | 9 ; PPs: 4 | 5 | 8 ; 9 ≡ 1 + 8 | 6 + 5 ;

• parse forest — a single item represents multiple trees [Billot & Lang, 89].

'

&

$

%2 3 4 5 6 7

boys with hats from France

1 2 3

4 5

6 7

8

9

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (4)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do
chart [i,i+1]← {α |α→ input i ∈ P};

for (1 ≤ l < |input |) do
for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do
if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then
chart [i,i+l+1]← chart [i,i+l+1] ∪ {α};

'

&

$

%

[0,2]← [0,1] + [1,2]
· · ·

[0,5]← [0,1] + [1,5]
[0,5]← [0,2] + [2,5]
[0,5]← [0,3] + [3,5]
[0,5]← [0,4] + [4,5]

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (5)

Generalized Chart Parsing

• The parse chart is a two-dimensional matrix of edges (aka chart items);

• an edge is a (possibly partial) rule instantiation over a substring of input;

• the chart indexes edges by start and end string position (aka vertices);

• dot in rule RHS indicates degree of completion: α→ β1...βi−1 • βi...βn

• active edges (aka incomplete items) — partial RHS: [1, 2, VP→ V •NP];

• passive edges (aka complete items) — full RHS: [1, 3, VP→ V NP•];

'

&

$

%

The Fundamental Rule

[i, j, α→ β1...βi−1 • βi...βn] + [j, k, βi → γ+•]

7→ [i, k, α→ β1...βi • βi+1...βn]

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (6)

Backpointers: Recording the Derivation History

0 1 2 3

0
2: S→ •NP VP

1: NP→ •NP PP
0: NP→ • kim

10: S→8 •VP
9: NP→8 •PP
8: NP→ kim •

17: S→8 15 •

1
5: VP→ •VP PP
4: VP→ •V NP
3: V→ • adored

12: VP→11 •NP
11: V→adored •

16: VP→15 •PP
15: VP→11 13 •

2 7: NP→ •NP PP
6: NP→ • snow

14: NP→13 •PP
13: NP→ snow •

3

• Use edges to record derivation trees: backpointers to daughters;

• a single edge can represent multiple derivations: backpointer sets.

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (7)

Ambiguity Packing in the Chart

General Idea

• Maintain only one edge for each α from i to j (the ‘representative’);

• record alternate sequences of daughters for α in the representative.

Implementation

• Group passive edges into equivalence classes by identity of α, i, and j;

• search chart for existing equivalent edge (h, say) for each new edge e;

• when h (the ‘host’ edge) exists, pack e into h to record equivalence;

• e not added to the chart, no derivations with or further processing of e;

→ unpacking multiply out all alternative daughters for all result edges.

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (8)

Background: Trees as Bracketed Sequences

• Trees can be encoded as sequences (dominance plus precedence):

'

&

$

%

(S (NP kim)

(VP (V adored)

(NP snow)))

'

&

$

%

S

NP

kim

VP

V

adores

NP

snow

• the first() element (at each level) represents the tree root (or mother);

• all other elements (i.e. the rest()) correspond to immediate daughters.

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (9)

Ambiguity Resolution Remains a (Major) Challenge

The Problem

• With broad-coverage grammars, even moderately complex sentences typ-
ically have multiple analyses (tens or hundreds, rarely thousands);

• unlike in grammar writing, exhaustive parsing is useless for applications;

• identifying the ‘right’ (intended) analysis is an ‘AI-complete’ problem;

• inclusion of (non-grammatical) sortal constraints is generally undesirable.

Typical Approaches

• Design and use statistical models to select among competing analyses;

• for string S, some analyses Ti are more or less likely: maximize P (Ti|S);

→ Probabilistic Context Free Grammar (PCFG) is a CFG plus probabilities.

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (10)

Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (11)

Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (11)

Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

But it must be recognized that the notion ‘probability’ of a
sentence is an entirely useless one, under any known

interpretation of this term. (Noam Chomsky, 1969)

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (11)

Probability Theory and Linguistics?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

But it must be recognized that the notion ‘probability’ of a
sentence is an entirely useless one, under any known

interpretation of this term. (Noam Chomsky, 1969)

Every time I fire a linguist,
system performance improves. (Fredrick Jelinek, 1980s)

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (11)

Probabilistic Context-Free Grammars

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (12)

A (Simplified) PCFG Estimation Example

S

NP

Kim

VP

VP

V

shot

NP

elephants

PP

P

in

NP

pajamas

S

NP

Kim

VP

V

loves

NP

NP

cake

PP

P

with

NP

chocolate

S

NP

Kim

VP

VP

V

arrived

PP

P

in

NP

Oslo

'

&

$

%

P(RHS|LHS) CFG Rule
S → NP VP

VP → VP PP
VP → V NP
PP → P NP
NP → NP PP
VP → V

• Estimate rule probability
from observed distribution;

→ conditional probabilities:

P(RHS|LHS) =
C(LHS, RHS)

C(LHS)

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (13)

Formally: Probabilistic Context-Free Grammars

• Formally, a context-free grammar (CFG) is a quadruple: 〈C, Σ, P, S〉

...

• P is a set of category rewrite rules (aka productions), each with a
conditional probability P(RHS|LHS), e.g.'

&

$

%

...

NP→ Kim [0.6]
NP→ snow [0.4]

...

• for each rule ‘α→ β1, β2, ..., βn’ ∈ P : α ∈ C and βi ∈ C ∪ Σ; 1 ≤ i ≤ n;

...

• for each α ∈ C, the probabilities of all rules R ‘α→ ...’ must sum to 1.

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (14)

Limitations of Context-Free Grammar

Agreement and Valency (For Example)

That dog barks.
∗That dogs barks.
∗Those dogs barks.

The dog chased a cat.
∗The dog barks a cat.
∗The dog chased.

∗The dog chased a cat my neighbours.

The cat was chased by a dog.
∗The cat was chased of a dog.

...

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (15)

Unification-Based Grammar: Structured Categories

• All (constituent) categories in the grammar are typed feature structures;

• feature structures are recursive, record-like objects: attribute – value sets;

• typing very similar to OO programming: a multipe-inheritance hierarchy;

• specific TFS configurations may correspond to ‘traditional’ categories;

• labels like ‘S’ or ‘NP’ are mere abbreviations, not elements of the theory.

word

HEAD noun
SPR

〈[

HEAD det
]〉

COMPS 〈〉

phrase

HEAD verb
SPR 〈〉

COMPS 〈〉

phrase

HEAD verb
SPR

〈[

HEAD noun
]〉

COMPS 〈〉

‘N’ ‘S’ ‘VP’

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (16)

The Type Hierarchy: Fundamentals

• Types ‘represent’ groups of entities with similar properties (‘classes’);

• types ordered by specificity: subtypes inherit properties of (all) parents;

• type hierarchy determines which types are compatible (and which not).

top

string feat-struc*list*

expression pos

noun verb det

ne-list *null*

phraseword

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (17)

Typed Feature Structure Subsumption

• Typed feature structures can be partially ordered by information content;

• a more general structure is said to subsume a more specific one;

•
top

 is the most general feature structure (while ⊥ is inconsistent);

• ⊑ (‘square subset or equal’) conventionally used to depict subsumption.

Feature structure F subsumes feature structure G (F ⊑ G) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of p in F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (18)

Feature Structure Subsumption: Examples

TFS1:
a

FOO x
BAR x

TFS2:
a

FOO x
BAR y

TFS3:

b

FOO y
BAR x
BAZ x

TFS4:
a

FOO 1 x
BAR 1

Hierarchy

a FOO

BAR
x

b BAZ y

Feature structure F subsumes feature structure G (F ⊑ G) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of p in F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (19)

Typed Feature Structure Unification

• Decide whether two typed feature structures are mutually compatible;

• determine combination of two TFSs to give the most general feature
structure which retains all information which they individually contain;

• if there is no such feature structure, unification fails (depicted as ⊥);

• unification monotonically combines information from both ‘input’ TFSs;

• relation to subsumption the unification of two structures F and G is
the most general TFS which is subsumed by both F and G (if it exists).

• ⊓ (‘square set intersection’) conventionally used to depict unification.

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (20)

Typed Feature Structure Unification: Examples

TFS1:
a

FOO x
BAR x

TFS2:
a

FOO x
BAR y

TFS3:

b

FOO y
BAR x
BAZ x

TFS4:
a

FOO 1 x
BAR 1

Hierarchy

a FOO

BAR
x

b BAZ y

TFS1 ⊓ TFS2 ≡ TFS2 TFS1 ⊓ TFS3 ≡ TFS3 TFS3 ⊓ TFS4 ≡

b

FOO 1 y
BAR 1
BAZ x

inf4820 — -nov- (oe@ifi.uio.no)

Natural Language Understanding (21)

