S [LTOP By
INDEX e
def_g-rel . .
NP VP prpstn_m_rel LBL hy “dog_n_rel” fg{lk_v_re}ll
Dm | RELS < LBL hq ARGO x5 LBL hs inco 69 >
v MARG h3| |RSTRhg| |ARGO x5 Py 2
The dog parked |HCONS (hs =4 ho, he =4 hs)

Computational Linguistics
(INF2820 — More Lisp)

(defun? (M) (F(=n0)1(*n (! (- n 1))

Stephan Oepen
Universitetet | Oslo & CSLI Stanford

oe@ifi.uio.no

Defining New Functions

e defun () associates a function definition (‘body’) with a symbol:

(defun name (parametery ... parametern) body)

? (defun ! (n)

(if (= n 0)
1
(xn (! (-=n1)))))
— |
?2(0) —1

? (! 5) — 120

e When a function is called, actual arguments (e.g. ‘0’ and ‘5’) are bound
to the function parameter(s) (i.e. ‘n’) for the scope of the function body;

e functions evaluate to the value of the last sexp in the function body.

INF2820 — 5-FEB-08 (0e@ifi.uio.no)

Computational Linguistics at Work (2)

Recursion as a Control Structure

e A function is said to be recursive when its body contains a call to itself:

(defun mlength (list)
(if (null list)
0
(+ 1 (mlength (rest list)))))

e ? (mlength ’(a b)))
0: (MLENGTH (A B))
1: (MLENGTH (B))
2: (MLENGTH NIL)
2: returned 0
1: returned 1
O: returned 2

— 2

e body contains (at least) one recursive and one non-recursive branch.

INF2820 — 5-FEB-08 (0e@ifi.uio.no)

Computational Linguistics at Work (3)

L ocal Variables

e Sometimes intermediate results need to be accessed more than once;
e let () and let* () create temporary value bindings for symbols, e.g;

? (defparameter *foox 42) — *F00*
? (let ((bar (+ *xfoox 1))) bar) — 43
? bar — error

4 N

(let ((variableq sexpq)

(variablen sexpn))
sSexp ... Sexp)

N /

¢ bindings valid only in the body of 1et () (other bindings are shadowed);

e let*x () binds sequentially, i.e. variable; will be accesible for variable; , 1.

INF2820 — 5-FEB-08 (0e@ifi.uio.no)

Computational Linguistics at Work (4)

lteration — Another Control Structure

e Recursion is very powerful, but at times iteration comes more natural:

\
(defun odd-numbers (list)
(loop
for number in list
when (oddp number)
collect number))
o J

Some loop() Directives
e for symbol {in|on } list iterate symbol through list elements or tails;

e for symbol from start [to end| | by Step | count symbol in range;

e [{ when |unless } test] { collect | append } sexp accumulate sexp;

e [while test | do sexp®™ execute expression(s) sexp™ in each iteration.

INF2820 — 5-FEB-08 (0e@ifi.uio.no)

Computational Linguistics at Work (5)

A Few More Examples

e loop() Is extremely general; a single iteration construct fits all needs:

? (Lloop for foo in ’(1 2 3) collect foo)
— (1 2 3)

? (Loop for foo on ’(1 2 3) collect foo)
— ((1 2 3) (2 3) (3))

? (Loop for foo on ’(1 2 3) append foo)
— (1232 33)

? (loop for i from 1 to 3 by 1 collect i)
— (1 2 3)

e 1oop () returns the final value of the accumulator (collect or append);

e return() terminates the iteration immediately and returns a value:

? (loop for foo in ’(1 2 3) when (evenp foo) do (return foo))

INF2820 — 5-FEB-08 (0e@ifi.uio.no)

Computational Linguistics at Work (6)

Input and Output — Side Effects

e Input and output, to files or the terminal, is mediated through streams;
e the symbol t can be used to refer to the default stream, the terminal:

? (format t "line: “a; token ‘~a’.~Y" 42 "foo")
~» line: 42; token ‘foo’.
— nil

e (read stream nil) reads one well-formed s-expression from stream,

e (read-line sStream nil) reads one line of text, returning it as a string;

¢ the second argument to reader functions asks to return nil on end-of-file.

(with-open-file (stream "sample.txt" :direction :input)
(loop

for line = (read-line stream nil)

while line do (format t ""a™%" line)))

/

INF2820 — 5-FEB-08 (0e@ifi.uio.no)

Computational Linguistics at Work (7)

Fine Points of Strings and Regular Expressions

e Need to escape double quote (") in strings, e.g. "foo \"bar\" baz";
e likewise for RE operators, to force literal match, e.g. /\ ([a-z]\)+\./;

e backslash is escape character for Lisp strings — "\\ ([a-z]\\)+\\.";

e REs in Lisp represented as strings, thus need two levels of escaping.

e The Portable Perl-Compatible Regular Expressions package for Lisp;

? (ppcre:all-matches-as-strings

"(\\+|-)7[0-9,]1+(\\. [0-9]+)7"

"in 1994, the loss was at $4,711,4242, or -4.2) per share"
— ("1994," "4.711,4242," "-4.2")

e many more functions in PPCRE library; see the on-line documentation.

INF2820 — 5-FEB-08 (0e@ifi.uio.no)

Computational Linguistics at Work (8)

e Multidimensional ‘grids’ of data can be represented as vectors or arrays;
e (make-array (rankj ... ranky)) creates an array with n dimensions;

? (setf *foo* (make-array ’(2 5) :initial-element 0))
— #((0 0 00 0) (0000 0))
? (setf (aref xfoox 1 2) 42) — 42

o 1 2 3 4

0| O 0 0 0 0

1| 0 O |42 | O 0

e all dimensions count from zero; aref () accesses one individual cell;

e one-dimensional arrays are called vectors (abstractly similar to lists).

e defstruct () creates a new abstract data type, encapsulating a structure:

? (defstruct rule
lhs rhs)
— RULE

e defstruct () defines a new constructor, accessors, and a type predicate:

? (setf *foo*x (make-rule :1hs ’S :rhs ’ (NP PP)))
— #S(RULE :LHS S :RHS (NP PP))

? (listp *foox*) — nil

? (rule-p *foo*) — t

? (setf (rule-rhs *foox*) ’(NP VP)) — (NP VP)
? *foox — #S(RULE :LHS S :RHS (NP VP))

e abstract data types encapsulate a group of related data (i.e. an ‘object’).

