
S

NP

Det

The

N

dog

VP

V

barked



























LTOP h1

INDEX e2

RELS

〈







prpstn m rel

LBL h1

MARG h3





















def q rel

LBL h4

ARG0 x5

RSTR h6

BODY h7





















“dog n rel”

LBL h8

ARG0 x5

















“bark v rel”

LBL h9

ARG0 e2

ARG1 x5











〉

HCONS 〈h3 =q h9, h6 =q h8〉



























Computational Linguistics
(INF2820 — Semantics)

{this(x) ∧ fierce(x) ∧ dog(x) ∧ bark(e,x) }

Stephan Oepen

Universitetet i Oslo & CSLI Stanford

oe@ifi.uio.no

Adding Semantics to Unification Grammars

• Logical Form
For each sentence admitted by the grammar, we want to produce a
meaning representation that is suitable for applying rules of inference.

This fierce dog chased that angry cat.

this(x) ∧ fierce(x) ∧ dog(x) ∧ chase(e,x,y)
∧ that(y) ∧ angry(y) ∧ cat(y)

• Compositionality
The meaning of each phrase is composed of the meanings of its parts.

• Existing Machinery
Unification is the only means for constructing semantics in the grammar.

inf2820 — -may- (oe@ifi.uio.no)

Natural Language Understanding (2)

(Elementary) Semantics in Typed Feature Structures

• Semantic content in the SEM attribute of every word and phrase

expression





























HEAD pos
SPR *list*
COMPS *list*
SEM

semantics

[

RELS *dlist*
]





























• The value of SEM for a sentence is simply a list of relations in the attribute
RELS, with the arguments in those relations ‘linked up’ appropriately:



















RELS

〈









PRED ”the rel”
ARG0 1 entity









,









PRED ”dog rel”
ARG0 1









,

















PRED ”bark rel”
ARG0 event
ARG1 1

















〉



















• Semantic relations are introduced by lexical entries, and are appended
when grammar rules combine words with other words or phrases.

inf2820 — -may- (oe@ifi.uio.no)

Natural Language Understanding (3)

Appending Lists with Unification

• A difference list embeds an open-ended list into a container structure
that provides a ‘pointer’ to the end of the ordinary list at the top level:

A

dlist



























LIST 1
ne-list













FIRST X
REST 2 *list*













LAST 2



























B

dlist



























LIST 3
ne-list













FIRST Y
REST 4 *list*













LAST 4



























• Using the LAST pointer of difference list A we can append A and B by

(i) unifying the front of B (i.e. the value of its LIST feature) into the tail
of A (i.e. the value of its LAST feature); and

(ii) using the tail of B as the new tail for the result of the concatenation.

inf2820 — -may- (oe@ifi.uio.no)

Natural Language Understanding (4)

Notational Conventions

• lists not available as built-in data type; abbreviatory notation in TDL:

< a, b > ≡ [FIRST a, REST [FIRST b, REST *null*]]

• underspecified (variable-length) list:

< a, ... > ≡ [FIRST a, REST *list*]

• difference (open-ended) lists; allow concatenation by unification:

<! a !> ≡ [LIST [FIRST a, REST #tail], LAST #tail]

• built-in and ‘non-linguistic’ types pre- and suffixed by asterisk (*top*);

• strings (e.g. “chased”) need no declaration; always subtypes of *string*;

• strings cannot have subtypes and are (thus) mutually incompatible.

inf2820 — -may- (oe@ifi.uio.no)

Natural Language Understanding (5)

An Example: Concatenation of Orthography
















ORTH













LIST 1
LAST 3





























−→

















ORTH













LIST 1
LAST 2





























,

















ORTH













LIST 2
LAST 3





























inf2820 — -may- (oe@ifi.uio.no)

Natural Language Understanding (6)

Linking Semantic Arguments

• Each word or phrase also has an INDEX attribute in SEM

• When heads select a complement or specifier, they constrain its INDEX

value – an entity variable for nouns, an event variable for verbs.

• Each lexeme also specifies a KEY relation (to allow complex semantics)

transitive-verb-lxm















































































HEAD verb
SPR.FIRST

[

SEM.INDEX 1
]

COMPS.FIRST

[

SEM.INDEX 2
]

SEM









































INDEX 0 event

KEY 3

























PRED *string*
ARG0 0
ARG1 1
ARG2 2

























RELS
〈
∣

∣

∣ 3
∣

∣

∣

〉























































































































inf2820 — -may- (oe@ifi.uio.no)

Natural Language Understanding (7)

Semantics of Phrases

• Every phrase makes the value of its own RELS attribute be the result of
appending the RELS lists of its daughter(s) (difference list concatenation);

• Every phrase identifies its semantic INDEX value with the INDEX value of
exactly one of its daughters (which we will call the semantic head);

• As we unify the whole TFS of a complement or specifier with the con-
straints in the syntactic head, unification takes care of semantic linking.

• Head – modifier structures are analogous: the modifier lexically con-
strains the INDEX of the head daughter it will modify; the rules unify the
whole TFS of the head daughter with the MOD value in the modifier.

inf2820 — -may- (oe@ifi.uio.no)

Natural Language Understanding (8)

A Linking Example Involving Modification

inf2820 — -may- (oe@ifi.uio.no)

Natural Language Understanding (9)

