
S

NP

Det

The

N

dog

VP

V

barked



























LTOP h1

INDEX e2

RELS

〈







prpstn m rel

LBL h1

MARG h3





















def q rel

LBL h4

ARG0 x5

RSTR h6

BODY h7





















“dog n rel”

LBL h8

ARG0 x5

















“bark v rel”

LBL h9

ARG0 e2

ARG1 x5











〉

HCONS 〈h3 =q h9, h6 =q h8〉



























Computational Linguistics
(INF2820 — Syntax)

S −→ NP VP; S −→ S PP; S −→ VP

Stephan Oepen

Universitetet i Oslo & CSLI Stanford

oe@ifi.uio.no

Candidate Theories of Grammar (1 of 3)

Language as a Set of Strings

The dog barks.
The angry dog barks.
The fierce dog barks.

The fierce angry dog barks.
The angry fierce dog barks.

The dog chased a cat.
A dog chased the cat.

The dog chased a black cat.
The dog chased a young cat.

The dog of my neighbours chased a cat.
A dog chased the cat of my neighbours.

The cat of my neighbours was chased by a dog.
...

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (2)

Grammatical Categories (1 of 2)

Word Classes or Parts of Speech (PoS)

cat, dog, neighbour(s), ... noun (N)
adore, bark(s), chase(d), was, ... verb (V)
fierce, angry, black, young, ... adjective (A)
quickly, probably, not, ... adverb (Adv)
a, the, my, that, ... determiner (D)
of, by, on, at, under, ... preposition (P)
she, mine, those, what, ... pronoun (Pro)
and, neither ... nor, because, ... conjunction (C)

'

&

$

%
the































cat
dog

∗adore































Kim likes to































bark
chase dogs

∗cat































a































fierce
angry
∗quickly































cat

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (3)

Grammatical Categories (2 of 2)

Number — Person — Case — Gender

That dog barks. — Those dogs bark.
I bark. — You bark. — They bark. — Sam shaved himself.

We bark. — You bark. — Those dogs bark.
I saw her. — She saw me. — My dog barked.

...

How many distinct verb forms according to number and person?

Tense — Aspect — Mood

The dog barks. — The dog barked — The dog will bark.
The dog has barked. — The dog is barking.

If I were a carpenter, ...
...

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (4)

Candidate Theories of Grammar (2 of 3)

Language as a Sequence of Word Classes

cat, dog, neighbour(s), ... noun (N)
adore, bark(s), chase(d), was, ... verb (V)
fierce, angry, black, young, ... adjective (A)
a, the, my, that, ... determiner (D)
of, by, on, at, under, ... preposition (P)

Regular Expressions�

�

�

�
D? A∗ N+ V



 D? A∗ N+




∗

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (5)

Candidate Theories of Grammar (2 of 3)

Language as a Sequence of Word Classes

cat, dog, neighbour(s), ... noun (N)
adore, bark(s), chase(d), was, ... verb (V)
fierce, angry, black, young, ... adjective (A)
a, the, my, that, ... determiner (D)
of, by, on, at, under, ... preposition (P)

Regular Expressions�

�

�

�
D? A∗ N+ V



 D? A∗ N+




∗

#

"

!
D? A∗ N+



 P D? A∗ N+




∗
V



 D? A∗ N+


 P D? A∗ N+




∗ 



∗

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (5)

Candidate Theories of Grammar (3 of 3)

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (6)

Mildly Mathematically: Context-Free Grammars

• Formally, a context-free grammar (CFG) is a quadruple: 〈C, Σ, P, S〉

• C is the set of categories (aka non-terminals), e.g. {S, NP, VP, V};

• Σ is the vocabulary (aka terminals), e.g. {Kim, snow, saw, in};

• P is a set of category rewrite rules (aka productions), e.g.'

&

$

%

S → NP VP
VP → V NP
NP → Kim
NP → snow
V → saw

• S ∈ C is the start symbol, a filter on complete (‘sentential’) results;

• for each rule ‘α → β1, β2, ..., βn’ ∈ P : α ∈ C and βi ∈ C ∪ Σ; 1 ≤ i ≤ n.

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (7)

Parsing: Recognizing the Language of a Grammar
'

&

$

%

S → NP VP
VP → V NP
VP → VP PP
NP → NP PP
PP → P NP
NP → Kim | snow | Oslo
V → saw
P → in

All Complete Derivations
• are rooted in the start symbol S;

• label internal nodes with cate-
gories ∈ C, leafs with words ∈ Σ;

• instantiate a grammar rule ∈ P at
each local subtree of depth one.

S

NP

Kim

VP

VP

V

saw

NP

snow

PP

P

in

NP

Oslo

S

NP

Kim

VP

V

saw

NP

NP

snow

PP

P

in

NP

oslo

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (8)

Limitations of Context-Free Grammar

Agreement and Valency (For Example)

That dog barks.
∗That dogs barks.
∗Those dogs barks.

The dog chased a cat.
∗The dog barked a cat.

∗The dog chased.
∗The dog chased a cat my neighbours.

The cat was chased by a dog.
∗The cat was chased of a dog.

...

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (9)

A Simple-Minded Parsing Algorithm

Control Structure

• top-down: given a parsing goal α, use all grammar rules that rewrite α;

• successively instantiate (extend) the right-hand sides of each rule;

• for each βi in the RHS of each rule, recursively attempt to parse βi;

• termination: when α is a prefix of the input string, parsing succeeds.

(Intermediate) Results

• Each result records a (partial) tree and remaining input to be parsed;

• complete results consume the full input string and are rooted in S;

• whenever a RHS is fully instantiated, a new tree is built and returned;

• all results at each level are combined and successively accumulated.

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (10)

The Recursive Descent Parser
'

&

$

%

(defun parse (input goal)

(if (equal (first input) goal)

(let ((edge (make-edge :category (first input))))

(list (make-parse :edge edge :input (rest input))))

(loop

for rule in (rules-deriving goal)

append (extend-parse (rule-lhs rule) nil (rule-rhs rule) input))))

'

&

$

%

(defun extend-parse (goal analyzed unanalyzed input)

(if (null unanalyzed)

(let ((edge (make-edge :category goal :daughters analyzed)))

(list (make-parse :edge edge :input input)))

(loop

for parse in (parse input (first unanalyzed))

append (extend-parse

goal (append analyzed (list (parse-edge parse)))

(rest unanalyzed)

(parse-input parse)))))

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics (11)

