
S

NP

Det

The

N

dog

VP

V

barked

LTOP h1

INDEX e2

RELS

〈

prpstn m rel

LBL h1

MARG h3

def q rel

LBL h4

ARG0 x5

RSTR h6

BODY h7

“dog n rel”

LBL h8

ARG0 x5

“bark v rel”

LBL h9

ARG0 e2

ARG1 x5

〉

HCONS 〈h3 =q h9, h6 =q h8〉

Computational Linguistics
(INF2820 — TFSs)

phrase

HEAD 1
SPR 〈〉
COMPS 3

−→ 2
phrase

SPR 〈〉
COMPS 〈〉

,

phrase

HEAD 1
SPR

〈

2
〉

COMPS 3

Stephan Oepen

Universitetet i Oslo & CSLI Stanford

oe@ifi.uio.no

Limitations of Context-Free Grammar

Agreement and Valency (For Example)

That dog barks.
∗That dogs barks.
∗Those dogs barks.

The dog chased a cat.
∗The dog barked a cat.

∗The dog chased.
∗The dog chased a cat my neighbours.

The cat was chased by a dog.
∗The cat was chased of a dog.

...

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (2)

A Really Complicated Language

[...] omdat ik Henk de nijlpaarden zag voeren .

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (3)

A Really Complicated Language

[...] omdat ik Jan Henk de nijlpaarden zag helpen voeren .

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (3)

Grammatical Functions

Licensing — Government — Agreement

The dog barks. — ∗The dog a cat barks — ∗The dog barks a cat.
Kim depends on Sandy — ∗Kim depends in Sandy

The class meets on Thursday in 3B at 12:15.

• Constituent node in analysis tree (lexical entry or instance of rule);

• Head licenses additional constituents and can govern their form;

• Specifier precedes head, singleton, nominative case, agreement;

• Complement post-head, licensed and governed, order constraints;

• Adjunct ‘free’ modifier, optional, may iterate, designated position;

• Government directed: a property of c1 determines the form of c2;

• Agreement bi-directional: co-occurence of properties on c1 and c2.

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (4)

A Highly Ambiguous Example

The manager packed that report on my desk.

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (5)

Structured Categories in a Unification Grammar

• All (constituent) categories in the grammar are typed feature structures;

• specific TFS configurations may correspond to ‘traditional’ categories;

→ labels like ‘S’ or ‘NP’ are mere abbreviations, not elements of the theory.

word

HEAD noun
SPR

〈[

HEAD det
]〉

COMPS 〈〉

phrase

HEAD verb
SPR 〈〉

COMPS 〈〉

phrase

HEAD verb
SPR

〈[

HEAD noun
]〉

COMPS 〈〉

‘N’ ‘S’ ‘VP’

‘lexical’ ‘maximal’ ‘intermediate’

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (6)

Interaction of Lexicon and Phrase Structure Schemata

phrase

HEAD 1
SPR 〈〉
COMPS 3

−→ 2
phrase

SPR 〈〉
COMPS 〈〉

,

phrase

HEAD 1
SPR 〈 2 〉
COMPS 3

ORTH “Kim”
HEAD noun
SPR 〈〉
COMPS 〈〉

ORTH “sleeps”
HEAD verb

SPR
〈

HEAD noun
SPR 〈〉
COMPS 〈〉

〉

COMPS 〈〉

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (7)

The Type Hierarchy: Fundamentals

• Types ‘represent’ groups of entities with similar properties (‘classes’);

• types ordered by specificity: subtypes inherit properties of (all) parents;

• type hierarchy determines which types are compatible (and which not).

top

string feat-struc*list*

expression pos

noun verb det

ne-list *null*

phraseword

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (8)

Multiple Inheritance

• flyer and swimmer no common descendants: they are incompatible;

• flyer and bee stand in hierarchical relationship: they unify to subtype;

• flyer and invertebrate have a unique greatest common descendant.

top

animal

swimmer invertebrateflyer vertebrate

bee fish

cod guppy

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (9)

The Type Hierarchy — Appropriate Features

• Features record properties of entities; in turn, feature values are TFSs;

• features are defined by a unique most general type: appropriateness;

• feature values constrained to a specific type → monotonic inheritance.

top

string feat-struc*list*

expression pos

noun verb det

ne-list *null*

phraseword

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (10)

Typed Feature Structure Subsumption

• Typed feature structures can be partially ordered by information content;

• a more general structure is said to subsume a more specific one;

•
top

 is the most general feature structure (while ⊥ is inconsistent);

• ⊑ (‘square subset or equal’) conventionally used to depict subsumption.

Feature structure F subsumes feature structure G (F ⊑ G) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of p in F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (11)

Feature Structure Subsumption: Examples

TFS1:
a

FOO x
BAR x

TFS2:
a

FOO x
BAR y

TFS3:

b

FOO y
BAR x
BAZ x

TFS4:
a

FOO 1 x
BAR 1

Hierarchy

a FOO
BAR

x

b BAZ y

Feature structure F subsumes feature structure G (F ⊑ G) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of p in F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (12)

Typed Feature Structure Unification

• Decide whether two typed feature structures are mutually compatible;

• determine combination of two TFSs to give the most general feature
structure which retains all information which they individually contain;

• if there is no such feature structure, unification fails (depicted as ⊥);

• unification monotonically combines information from both ‘input’ TFSs;

• relation to subsumption the unification of two structures F and G is
the most general TFS which is subsumed by both F and G (if it exists).

• ⊓ (‘square set intersection’) conventionally used to depict unification.

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (13)

Typed Feature Structure Unification: Examples

TFS1:
a

FOO x
BAR x

TFS2:
a

FOO x
BAR y

TFS3:

b

FOO y
BAR x
BAZ x

TFS4:
a

FOO 1 x
BAR 1

Hierarchy

a FOO
BAR

x

b BAZ y

TFS1 ⊓ TFS2 ≡ TFS2 TFS1 ⊓ TFS3 ≡ TFS3 TFS3 ⊓ TFS4 ≡

b

FOO 1 y
BAR 1
BAZ x

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (14)

Type Constraints and Appropriate Features

• Well-formed TFSs satisfy all type constraints from the type hierarchy;

• type constraints are typed feature structures associated with a type;

• the top-level features of a type constraint are appropriate features;

• type constraints express generalizations over a ‘class’ (set) of objects.

type constraint appropriate features

ne-list
ne-list

FIRST *top*
REST *list*

FIRST and REST

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (15)

More Interesting Well-Formed Unification

Type Constraints Associated to animal Hierarchy

swimmer →
swimmer

FINS bool

 mammal →
mammal

FRIENDLY bool

whale →

whale

BALEEN bool
FINS true
FRIENDLY bool

mammal

FRIENDLY true

⊓
swimmer

FINS bool

≡

whale

BALEEN bool
FINS true
FRIENDLY true

mammal

FRIENDLY true

⊓
swimmer

FINS false

≡ ⊥

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (16)

Recursion in the Type Hierarchy

• Type hierarchy must be finite after type inference; illegal type constraint:

list := *top* & [FIRST *top*, REST *list*].

• needs additional provision for empty lists; indirect recursion:

list := *top*.

ne-list := *list* & [FIRST *top*, REST *list*].

null := *list*.

• recursive types allow for parameterized list types (‘list of X’):

s-list := *list*.

s-ne-list := *ne-list* & *s-list &

[FIRST expression, REST *s-list*].

s-null := *null* & *s-list*.

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (17)

Notational Conventions

• lists not available as built-in data type; abbreviatory notation in TDL:

< a, b > ≡ [FIRST a, REST [FIRST b, REST *null*]]

• underspecified (variable-length) list:

< a, ... > ≡ [FIRST a, REST *list*]

• difference (open-ended) lists; allow concatenation by unification:

<! a !> ≡ [LIST [FIRST a, REST #tail], LAST #tail]

• built-in and ‘non-linguistic’ types pre- and suffixed by asterisk (*top*);

• strings (e.g. “chased”) need no declaration; always subtypes of *string*;

• strings cannot have subtypes and are (thus) mutually incompatible.

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (18)

Properties of (Our) Type Hierarchies

• Unique Top a single hierarchy of all types with a unique top node;

• No Cycles no path through the hierarchy from one type to itself;

• Unique Greatest Lower Bounds Any two types in the hierarchy are
either (a) incompatible (i.e. share no descendants) or (b) have a unique
most general (‘highest’) descendant (called their greatest lower bound);

• Closed World all types that exist have a known position in hierarchy;

• Compatibility type compatibility in the hierarchy determines feature
structure unifiability: two types unify to their greatest lower bound.

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (19)

Multiple Inheritance (Repeated for Convenience)

• flyer and swimmer no common descendants: they are incompatible;

• flyer and bee stand in hierarchical relationship: they unify to subtype;

• flyer and invertebrate have a unique greatest common descendant.

top

animal

swimmer invertebrateflyer vertebrate

bee fish

cod guppy

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (20)

An Invalid Type Hierarchy

• swimmer and vertebrate have two joint descendants: fish and whale;

• fish and whale are incomparable in the hierarchy: glb condition violated.

top

animal

swimmer invertebrateflyer vertebrate

bee fish

cod guppy

mammal

whale dog

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (21)

Fixing the Type Hierarchy

• LKB system introduces glb types as required: ‘swimmer-vertebrate’.

top

animal

swimmer invertebrateflyer vertebrate

bee glbtype42 mammal

whale dogfish

cod guppy

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (22)

Properties of (Our) Typed Feature Structures

• Finiteness a typed feature structure has a finite number of nodes;

• Unique Root and Connectedness a typed feature structure has a
unique root node; apart from the root, all nodes have at least one parent;

• No Cycles no node has an arc that points back to the root node or to
another node that intervenes between the node itself and the root;

• Unique Features any node can have any (finite) number of outgoing
arcs, but the arc labels (i.e. features) must be unique within each node;

• Typing each node has single type which is defined in the hierarchy.

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (23)

Typed Feature Structure Example (as AVM)

phrase

HEAD verb

ARGS

ne-list

FIRST

word

ORTH “chased”
HEAD verb

REST

ne-list

FIRST
expression

HEAD noun

REST *null*

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (24)

Typed Feature Structure Example (as Graph)

phrase
HEAD

-verb

R

ARGS

ne-list
FIRST

-word ORTH
-“chased”

HEAD

jverb

R

REST

ne-list
FIRST

-
expression

HEAD
-
noun

R

REST

null

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (25)

Typed Feature Structure Example (in TDL)

'

&

$

%

vp := phrase &

[HEAD verb,

ARGS *ne-list* &

[FIRST word &

[ORTH "chased",

HEAD verb],

REST *ne-list* &

[FIRST expression &

[HEAD noun],

REST *null*]]] .

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (26)

Reentrancy in a Typed Feature Structure (Graph)

phrase
HEAD

-verb

R

ARGS

ne-list
FIRST

-word
ORTH

-“chased”

HEAD

I

R

REST

ne-list
FIRST

-
phrase

HEAD
-
noun

R

REST

null

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (27)

Reentrancy in a Typed Feature Structure (AVM)

phrase

HEAD 1 verb

ARGS

ne-list

FIRST

word

ORTH “chased”
HEAD 1

REST

ne-list

FIRST
phrase

HEAD noun

REST *null*

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (28)

Reentrancy in a Typed Feature Structure (TDL)

'

&

$

%

vp := phrase &

[HEAD #head & verb,

ARGS *ne-list* &

[FIRST word &

[ORTH "chased",

HEAD #head],

REST *ne-list* &

[FIRST phrase &

[HEAD noun],

REST *null*]]] .

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (29)

The Linguistic Knowledge Builder (LKB)

Compiler and Interactive Debugger

• Grammar definition errors identified at load time by position in file;

• inheritance and appropriateness tracked by type and attributes;

• batch check, expansion, and indexing of full lexicon on demand;

• efficient parser and generator to map between strings and meaning;

• visualization of main data types; interactive stepping and unification.

• Main developers: Copestake (original), Carroll, Malouf, and Oepen;

• implementation: Allegro CL, Macintosh CL, (LispWorks, CMU CL);

• available in open-source and binary form for common platforms.

inf2820 — -mar- (oe@ifi.uio.no)

Computational Linguistics (30)

